Mitigating collision is a fundamental issue in contact problems, and is required to ensure the safety of a robotic cell. Research into the contact problem between robots and their environment is divided into two parts: one uses the environmental contact model and parameter estimation, the other uses the robot force control method. There are two main problems with this research method. One is that the two research levels are not effectively combined to form a complete solution for force control in practice. The other problem is that research on excessive contact force in the collision phase has not been studied in depth for force control. In this paper, a sensing-executing bionic system is proposed that combines environmental detection and robotic force control based on the way an ant functions. The bionic system clearly explains the process from environment detection to robot control, which can provide guidance when designing a new robot control system. An adaptive switching control algorithm is proposed to mitigate the collision force in the collision phase. From the simulation results, the collision force is significantly reduced due to the implementation of adaptive switching control. Finally, a new self-sensing device is designed which can be integrated into the robot control device. However, as there are no additional sensors or computational complexity in the system, the effectiveness of the circuit and superiority of the adaptive parameter update must be verified by experimentation.

References

1.
Oriolo
,
B.
,
Siciliano
,
L.
,
Sciavicco
,
L.
, and
Villani
,
G.
,
2010
,
Robotics: Modelling, Planning and Control
,
Springer
,
London
, pp.
364
405
.
2.
Park
,
H.
,
Park
,
J.
,
Lee
,
D.-H.
,
Park
,
J.-H.
,
Baeg
,
M.-H.
, and
Bae
,
J.-H.
,
2017
, “
Compliance-Based Robotic Peg-in-Hole Assembly Strategy Without Force Feedback
,”
IEEE Trans. Ind. Electron.
,
64
(
8
), pp.
6299
6309
.
3.
Keemink
,
A. Q. L.
,
van der Kooij
,
H.
, and
Stienen
,
A. H. A.
,
2018
, “
Admittance Control for Physical Human–Robot Interaction
,”
Int. J. Rob. Res.
,
37
(
11
), pp.
1421
1444
.
4.
Patarinski
,
S. P.
, and
Botev
,
R. G.
,
1993
, “
Robot Force Control: A Review
,”
Mechatronics
,
3
(
4
), pp.
377
398
.
5.
Craig
,
M. H.
, and
Raibert
,
J. J.
,
1981
, “
Hybrid Position/Force Control of Manipulators
,”
ASME J. Dyn. Syst. Meas. Control
,
103
(
2
), pp.
126
133
.
6.
Mason
,
M. T.
,
1981
, “
Compliance and Force Control for Computer Controlled Manipulators
,”
IEEE Trans. Syst., Man, Cybern.
,
11
(
6
), pp.
418
432
.
7.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation—Part I: Theory
,”
ASME J. Dyn. Syst. Meas. Control
,
107
(
1
), pp.
1
7
.
8.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation—Part II: Implementation
,”
ASME J. Dyn. Syst. Meas. Control
,
107
(
1
), pp.
8
16
.
9.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation—Part III: Applications
,”
ASME J. Dyn. Syst. Meas. Control
,
107
(
1
), pp.
17
24
.
10.
Lawrence
,
D. A.
,
1988
, “
Impedance Control Stability Properties in Common Implementations
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Philadelphia, PA, Apr. 24–29, pp.
24
29
.
11.
Ott
,
C.
,
Mukherjee
,
R.
, and
Nakamura
,
Y.
,
2010
, “
Unified Impedance and Admittance Control
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, May 3–7, pp.
554
561
.
12.
Ott
,
C.
,
Mukherjee
,
R.
, and
Nakamura
,
Y.
,
2014
, “
A Hybrid System Framework for Unified Impedance and Admittance Control
,”
J. Intell. Rob. Syst.
,
78
(
3–4
), pp.
359
375
.
13.
Meng
,
W. S.
, and
Lu
,
Q. H.
,
1991
, “
Impedance Control With Adaptation for Robotic Manipulations
,”
IEEE Trans. Rob. Autom.
,
7
(
3
), pp.
408
415
.
14.
Slotine
,
J.-J. E.
, and
Weiping
,
L.
,
2002
, “
Adaptive Manipulator Control: A Case Study
,”
IEEE Trans. Autom. Control
,
33
(
11
), pp.
995
1003
.
15.
Sharf
,
D.
,
Erickson
,
M.
, and
Weber
,
I.
,
2003
, “
Contact Stiffness and Damping Estimation for Robotic Systems
,”
Int. J. Rob. Res.
,
22
(
1
), pp.
41
57
.
16.
Love
,
L. J.
, and
Book
,
W. J.
,
1995
, “
Environment Estimation for Enhanced Impedance Control
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Nagoya, Japan, May 21–27, pp.
1854
1859
.
17.
Diolaiti
,
N.
,
Melchiorri
,
C.
, and
Stramigioli
,
S.
,
2005
, “
Contact Impedance Estimation for Robotic Systems
,”
IEEE Trans. Rob.
,
21
(
5
), pp.
925
935
.
18.
Duan
,
J.
,
Gan
,
Y.
,
Chen
,
M.
, and
Dai
,
X.
,
2018
, “
Adaptive Variable Impedance Control for Dynamic Contact Force Tracking in Uncertain Environment
,”
Rob. Auton. Syst.
,
102
, pp.
54
65
.
19.
Cavenago
,
F.
,
Voli
,
L.
, and
Massari
,
M.
,
2017
, “
Adaptive Hybrid System Framework for Unified Impedance and Admittance Control
,”
J. Intell. Rob. Syst.
,
91
(
3–4
), pp.
569
581
.
20.
Indri
,
M.
,
Trapani
,
S.
, and
Lazzero
,
I.
,
2017
, “
Development of a Virtual Collision Sensor for Industrial Robots
,”
Sensors
,
17
(
5
), p.
E1148
.
21.
Vorndamme
,
J.
,
Schappler
,
M.
, and
Haddadin
,
S.
,
2017
, “
Collision Detection, Isolation and Identification for Humanoids
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Singapore, May 29–June 3, pp.
4754
4761
.
22.
Zhang
,
T.
,
Louie
,
W. Y.
,
Nejat
,
G.
, and
Benhabib
,
B.
,
2018
, “
Robot Imitation Learning of Social Gestures With Self-Collision Avoidance Using a 3D Sensor
,”
Sensors
,
18
(
7
), p.
2355
.
23.
Vanderborght
,
B.
,
Albu-Schaeffer
,
A.
,
Bicchi
,
A.
,
Burdet
,
E.
,
Caldwell
,
D. G.
,
Carloni
,
R.
,
Catalano
,
M.
,
Eiberger
,
O.
,
Friedl
,
W.
,
Ganesh
,
G.
,
Garabini
,
M.
,
Grebenstein
,
M.
,
Grioli
,
G.
,
Haddadin
,
S.
,
Hoppner
,
H.
,
Jafari
,
A.
,
Laffranchi
,
M.
,
Lefeber
,
D.
,
Petit
,
F.
,
Stramigioli
,
S.
,
Tsagarakis
,
N.
,
Van Damme
,
M.
,
Van Ham
,
R.
,
Visser
,
L. C.
, and
Wolf
,
S.
,
2013
, “
Variable Impedance Actuators: A Review
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1601
1614
.
24.
Wolf
,
S.
,
Grioli
,
G.
,
Eiberger
,
O.
,
Friedl
,
W.
,
Grebenstein
,
M.
,
Hoppner
,
H.
,
Burdet
,
E.
,
Caldwell
,
D. G.
,
Carloni
,
R.
,
Catalano
,
M. G.
,
Lefeber
,
D.
,
Stramigioli
,
S.
,
Tsagarakis
,
N.
,
Van Damme
,
M.
,
Van Ham
,
R.
,
Vanderborght
,
B.
,
Visser
,
L. C.
,
Bicchi
,
A.
, and
Albu-Schaffer
,
A.
,
2016
, “
Variable Stiffness Actuators: Review on Design and Components
,”
IEEE-ASME Trans. Mechatronics
,
21
(
5
), pp.
2418
2430
.
25.
Grafakos
,
S.
,
Dimeas
,
F.
, and
Aspragathos
,
N. A.
,
2016
, “
Variable Admittance Control in pHRI Using EMG-Based Arm Muscles Co-Activation
,”
IEEE International Conference on Systems, Man, and Cybernetics
(
SMC
), Budapest, Hungary, Oct. 9–12, pp.
1900
1905
.
26.
Liberzon
,
D.
,
2003
,
Switching in Systems and Control
,
Birkhäuser
,
Boston, MA
.
27.
Hong
,
F.
, and
Pang
,
C. K.
,
2012
, “
Robust Vibration Control at Critical Resonant Modes Using Indirect-Driven Self-Sensing Actuation in Mechatronic Systems
,”
ISA Trans.
,
51
(
6
), pp.
834
840
.
You do not currently have access to this content.