A container crane mounted on a pontoon is utilized to transfer containers to smaller ships when a large container ship cannot reach the shallow water port. The shipboard container is considered as an underactuated system having complicated kinematic constraints and hysteretic nonlinearities, with only two actuators to conduct simultaneous tasks: tracking the trolley to destination, lifting the container to the desired cable length, and suppressing the axial container oscillations and container swing. Parameter variations, wave-induced motions of the ship, wind disturbance, and nonlinearities remain challenges for control of floating container cranes. To deal with these problems, this study presents the design of two nonlinear robust controllers, taking into account the influence of the output hysteresis, and using velocity feedback from a state observer. Control performance of the proposed controllers is verified in both simulation and experiments. Together with consistently stabilizing outputs, the proposed control approach well rejects hysteresis and disturbance.

References

References
1.
Sun
,
N.
,
Fang
,
Y.
,
Chen
,
H.
,
Fu
,
Y.
, and
Lu
,
B.
,
2018
, “
Nonlinear Stabilizing Control for Ship-Mounted Cranes With Ship Roll and Heave Movements: Design, Analysis, and Experiments
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
48
(
10
), pp.
1781
1793
.
2.
Sun
,
N.
,
Yang
,
T.
,
Chen
,
H.
,
Fang
,
Y.
, and
Qian
,
Y.
,
2019
, “
Adaptive Anti-Swing and Positioning Control for 4-DOF Rotary Cranes Subject to Uncertain/Unknown Parameters With Hardware Experiments
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
49
(7), pp.
1309
1321
.
3.
Cha
,
J. H.
,
Roh
,
M.-I.
, and
Lee
,
K. Y.
,
2010
, “
Dynamic Response Simulation of a Heavy Cargo Suspended by a Floating Crane Based on Multibody System Dynamics
,”
Ocean Eng.
,
37
(
14–15
), pp.
1273
1291
.
4.
Le
,
T. A.
,
Dang
,
V. H.
,
Ko
,
D. H.
,
An
,
T. N.
, and
Lee
,
S.-G.
,
2013
, “
Nonlinear Controls of a Rotating Tower Crane in Conjunction With Trolley Motion
,”
J. Syst. Control Eng.
,
227
(
5
), pp.
451
460
.
5.
Tuan
,
L. A.
, and
Lee
,
S.-G.
,
2017
, “
3D Cooperative Control of Tower Cranes Using Robust Adaptive Techniques
,”
J. Franklin Inst.
,
354
(
18
), pp.
8333
8357
.
6.
Tuan
,
L. A.
, and
Lee
,
S.-G.
,
2018
, “
Modelling and Advanced Sliding Mode Controls of Crawler Cranes Considering Wire Ropes Elasticity and Complicated Operation
,”
Mech. Syst. Signal Process.
,
103
, pp.
250
263
.
7.
Sun
,
N.
,
Fang
,
Y.
, and
Chen
,
H.
,
2016
, “
A Continuous Robust Antiswing Tracking Control Scheme for Underactuated Crane Systems With Experimental Verification
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
4
), p.
041002
.
8.
Zhou
,
J.
,
Zhang
,
K.
, and
Hu
,
G.
,
2017
, “
Wave-Based Control of a Crane System With Complex Loads
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
8
), p.
081016
.
9.
Vázquez
,
C.
,
Fridman
,
L.
,
Collado
,
J.
, and
Castillo
,
I.
,
2015
, “
Second-Order Sliding Mode Control of a Perturbed-Crane
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
8
), p.
081010
.
10.
Sun
,
N.
,
Wu
,
Y.
,
Fang
,
Y.
, and
Chen
,
H.
,
2018
, “
Nonlinear Antiswing Control for Crane Systems With Double-Pendulum Swing Effects and Uncertain Parameters: Design and Experiments
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
3
), pp.
1413
1422
.
11.
Sun
,
N.
,
Yang
,
T.
,
Fang
,
Y.
,
Wu
,
Y.
, and
Chen
,
H.
,
2019
, “
Transportation Control of Double-Pendulum Cranes With a Nonlinear Quasi-PID Scheme: Design and Experiments
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
49
(7), pp.
1408
1418
.
12.
Tuan
,
L. A.
,
Cuong
,
H. M.
,
Trieu
,
P. V.
,
Nho
,
L. C.
,
Thuan
,
V. D.
, and
Anh
,
L. V.
,
2018
, “
Adaptive Neural Network Sliding Mode Control of Shipboard Container Cranes Considering Actuator Backlash
,”
Mech. Syst. Signal Process.
,
112
, pp.
233
250
.
13.
Singhose
,
W.
,
Kim
,
D.
, and
Kenison
,
M.
,
2008
, “
Input Shaping Control of Double-Pendulum Bridge Crane Oscillations
,”
ASME J. Dyn. Syst., Meas., Control
,
130
(
3
), p.
034504
.
14.
Masoud
,
Z. N.
,
2007
, “
Oscillation Control of Quay-Side Container Cranes Using Cable-Length Manipulation
,”
ASME J. Dyn. Syst., Meas., Control
,
129
(
2
), pp.
224
228
.
15.
Masoud
,
Z. N.
, and
Alhazza
,
K. A.
,
2013
, “
Frequency-Modulation Input Shaping Control of Double-Pendulum Overhead Cranes
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
2
), p.
021005
.
16.
Garcia
,
A.
,
Singhose
,
W.
, and
Ferri
,
A.
,
2017
, “
Three-Dimensional Dynamic Modeling and Control of Off-Centered Bridge Crane Lifts
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
4
), p.
041005
.
17.
Kreuzer
,
E.
,
Pick
,
M.-A.
,
Rapp
,
C.
, and
Theis
,
J.
,
2014
, “
Unscented Kalman Filter for Real-Time Load Swing Estimation of Container Cranes Using Rope Forces
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
4
), p.
041009
.
18.
Lin
,
T.-C.
,
Lin
,
Y.-C.
,
Zirkohi
,
M. M.
, and
Huang
,
H.-C.
,
2016
, “
Direct Adaptive Fuzzy Moving Sliding Mode Proportional Integral Tracking Control of a Three-Dimensional Overhead Crane
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
10
), p.
101001
.
19.
Pedersen
,
H. C.
,
Andersen
,
T. O.
, and
Nielsen
,
B. K.
,
2015
, “
Comparison of Methods for Modeling a Hydraulic Loader Crane With Flexible Translational Links
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
10
), p.
101012
.
20.
Schaper
,
U.
,
Sawodny
,
O.
,
Zeitz
,
M.
, and
Schneider
,
K.
,
2014
, “
Load Position Estimation for Crane Anti-Sway Control Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
3
), p.
031013
.
21.
Masoud
,
Z. N.
, and
Nayfeh
,
A. H.
,
2003
, “
Sway Reduction on Container Cranes Using Delayed Feedback Controller
,”
Nonlinear Dyn.
,
34
(
3/4
), pp.
347
358
.
22.
Nayfeh
,
N. A.
, and
Baumann
,
W. T.
,
2008
, “
Nonlinear Analysis of Time-Delay Position Feedback Control of Container Cranes
,”
Nonlinear Dyn.
,
53
(
1–2
), pp.
75
88
.
23.
Erneux
,
T.
, and
Nagy
,
T. K.
,
2007
, “
Nonlinear Stability of a Delayed Feedback Controlled Container Crane
,”
J. Vib. Control
,
13
(
5
), pp.
603
616
.
24.
Messineo
,
S.
, and
Serrani
,
A.
,
2009
, “
Offshore Crane Control Based on Adaptive External Models
,”
Automatica
,
45
(
11
), pp.
2546
2556
.
25.
Ngo
,
Q. H.
, and
Hong
,
K.-S.
,
2012
, “
Dynamics of the Container Crane on a Mobile Harbor
,”
Ocean Eng.
,
53
, pp.
16
24
.
26.
Ngo
,
Q. H.
, and
Hong
,
K.-S.
,
2012
, “
Sliding-Mode Antisway Control of an Offshore Container Crane
,”
IEEE/ASME Trans. Mechatronics
,
17
(
2
), pp.
201
209
.
27.
Kim
,
D.
, and
Park
,
Y.
,
2016
, “
Tracking Control in x-y Plane of an Offshore Container Crane
,”
J. Vib. Control
,
23
(
3
), pp.
469
483
.
28.
Tuan
,
L. A.
,
Lee
,
S.-G.
,
Nho
,
L. C.
, and
Cuong
,
H. M.
,
2015
, “
Robust Controls for Ship-Mounted Container Cranes With Viscoelastic Foundation and Flexible Hoisting Cable
,”
J. Syst. Control Eng.
,
229
(
7
), pp.
662
674
.
29.
Tuan
,
L. A.
,
Cuong
,
H. M.
,
Lee
,
S.-G.
,
Nho
,
L. C.
, and
Moon
,
K.
,
2016
, “
Nonlinear Feedback Control of Container Crane Mounted on Elastic Foundation With Flexibility of Suspended Cable
,”
J. Vib. Control
,
22
(
13
), pp.
3067
3078
.
30.
Raja Ismail
,
R. M. T.
,
That
,
N. D.
, and
Ha
,
Q. P.
,
2015
, “
Modelling and Robust Trajectory Following for Offshore Container Crane Systems
,”
Autom. Constr.
,
59
, pp.
179
187
.
31.
Ngo
,
Q. H.
,
Nguyen
,
N. P.
,
Nguyen
,
C. N.
,
Tran
,
T. H.
, and
Ha
,
Q. P.
,
2017
, “
Fuzzy Sliding Mode Control of an Offshore Container Crane
,”
Ocean Eng.
,
140
, pp.
125
134
.
32.
Phat
,
V. N.
, and
Ha
,
Q. P.
,
2009
, “
H∞ Control and Exponential Stability of Nonlinear Nonautonomous Systems With Time-Varying Delay
,”
J. Optim. Theory Appl.
,
142
(
3
), pp.
603
618
.
33.
Sun
,
Y.
,
Xu
,
J.
,
Qiang
,
H.
, and
Lin
,
G.
,
2019
, “
Adaptive Neural-Fuzzy Robust Position Control Scheme for Maglev Train Systems With Experimental Verification
,”
IEEE Trans. Ind. Electron.
(epub).
34.
Sun
,
Y.
,
Xu
,
J.
,
Chen
,
C.
, and
Lin
,
G.
,
2019
, “
Fuzzy H∞ Robust Control for Magnetic Levitation System of Maglev Vehicles Based on T-S Fuzzy Model: Design and Experiments
,”
J. Intell. Fuzzy Syst.
,
36
(
2
), pp.
911
922
.
35.
Sun
,
Y.
,
Xu
,
J.
,
Qiang
,
H.
,
Chen
, and
Lin
,
G.
,
2019
, “
Adaptive Sliding Mode Control of Maglev System Based on RBF Neural Network Minimum Parameter Learning Method
,”
Measurement
,
141
, pp.
217
226
.
36.
Omar
,
H. M.
, and
Nayfeh
,
A. H.
,
2005
, “
Gantry Cranes Gain Scheduling Feedback Control With Friction Compensation
,”
J. Sound Vib.
,
281
(
1–2
), pp.
1
20
.
37.
Chang
,
C.-Y.
,
Hsu
,
K.-C.
,
Chiang
,
K.-H.
, and
Huang
,
G.-E.
,
2008
, “
Modified Fuzzy Variable Structure Control Method to the Crane System With Control Deadzone Problem
,”
J. Vib. Control
,
14
(
7
), pp.
953
969
.
38.
Zhao
,
Y.
, and
Gao
,
H.
,
2012
, “
Fuzzy-Model-Based Control of an Overhead Crane With Input Delay and Actuator Saturation
,”
IEEE Trans. Fuzzy Syst.
,
20
(
1
), pp.
181
186
.
39.
Sun
,
N.
,
Fang
,
Y.
, and
Zhang
,
X.
,
2013
, “
Energy Coupling Output Feedback Control of 4-DOF Underactuated Cranes With Saturated Inputs
,”
Automatica
,
49
(
5
), pp.
1318
1325
.
40.
Singh
,
A. M.
, and
Ha
,
Q. P.
,
2019
, “
Fast Terminal Sliding Control Application for Second-Order Underactuated Systems
,”
Int. J. Control Autom. Syst.
(in press).
41.
Sun
,
Y.
,
Xu
,
J.
,
Qiang
,
H.
,
Wang
,
W.
, and
Lin
,
G.
,
2019
, “
Hopf Bifurcation Analysis of Maglev Vehicle–Guideway Interaction Vibration System and Stability Control Based on Fuzzy Adaptive Theory
,”
Comput. Ind.
,
108
, pp.
197
209
.
42.
Kwok
,
N. M.
,
Ha
,
Q. P.
,
Nguyen
,
M. T.
,
Li
,
J.
, and
Samali
,
B.
,
2007
, “
Bouc-Wen Model Parameter Identification for a MRF Damper Using Computationally-Efficient GA
,”
ISA Trans.
,
46
(
2
), pp.
167
179
.
43.
Zhou
,
J.
,
Wen
,
C.
, and
Li
,
T.
,
2012
, “
Adaptive Output Feedback Control of Uncertain Nonlinear Systems With Hysteresis Nonlinearity
,”
IEEE Trans. Autom. Control
,
57
(
10
), pp.
2627
2633
.
44.
Ha
,
Q. P.
,
Royel
,
S.
,
Li
,
J.
, and
Li
,
Y.
,
2016
, “
Hysteresis Modeling in Smart Structure MR Devices Using Describing Functions
,”
IEEE/ASME Trans. Mechatronics
,
21
(
1
), pp.
44
50
.
45.
Utkin
,
V.
,
Guldner
,
J.
, and
Shi
,
J.
,
2009
,
Sliding Mode Control in Electro-Mechanical Systems
,
2nd ed.
,
CRC Press
, Boca Raton, FL.
46.
Celani
,
F.
,
2006
, “
A Luenberger-Style Observer for Robot Manipulators With Position Measurements
,”
14th Mediterranean Conference on Control and Automation
, Ancona, Italy, June 28–30, pp.
1
6
.
47.
Perez
,
T.
, and
Fossen
,
T. I.
,
2009
, “
A Matlab Tool for Parametric Identification of Radiation-Force Models of Ships and Offshore Structures
,”
Model. Identif. Control
,
30
(1), pp.
1
15
.https://core.ac.uk/download/pdf/26752853.pdf
You do not currently have access to this content.