This paper examines the problem of controlling the exchange of current in photovoltaic-plus-storage systems to achieve photovoltaic (PV) maximum power point tracking (MPPT). This work is motivated by the need for MPPT algorithms that are less costly and complex to implement in PV farms with integrated battery energy storage. We study the online optimal control of a “hybrid” PV/lithium (Li)-ion battery integration topology that is self-balancing in nature. The self-balancing behavior ensures that the state of charge (SOC) across different cells balances to the same stable equilibrium value without needing any balancing power electronics, thereby significantly reducing the integration cost. The DC–DC converters in this hybrid system are controlled to achieve PV MPPT that maximizes energy generation and storage. However, sensing needs for traditional MPPT controllers can render the hybrid system unnecessarily complex and costly. We surmount this problem by: (i) developing a novel model-based PV power estimation algorithm that only requires voltage measurement, and (ii) using this algorithm together with extremum-seeking (ES) control to achieve closed-loop, estimation-based PV MPPT. Simulation case studies show that this estimation-based MPPT controller is able to harness more than 99% of the maximum available solar energy under different irradiation profiles.

References

1.
Fu
,
R.
,
Feldman
,
D.
,
Margolis
,
R.
,
Woodhouse
,
M.
, and
Ardani
,
K.
,
2017
, “
U.S. Solar Photovoltaic System Cost Benchmark: Q1 2017
,” National Renewable Energy Laboratory, Technical Report No. NREL/TP-6A20-68925.
2.
Toledo
,
O. M.
,
Filho
,
D. O.
, and
Diniz
,
A. S. A. C.
,
2010
, “
Distributed Photovoltaic Generation and Energy Storage Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
506
511
.
3.
Hill
,
C. A.
,
Such
,
M. C.
,
Chen
,
D.
,
Gonzalez
,
J.
, and
Grady
,
W. M.
,
2012
, “
Battery Energy Storage for Enabling Integration of Distributed Solar Power Generation
,”
IEEE Trans. Smart Grid
,
3
(
2
), pp.
850
857
.
4.
Zubi
,
G.
,
Dufo-López
,
R.
,
Carvalho
,
M.
, and
Pasaoglu
,
G.
,
2018
, “
The Lithium-Ion Battery: State of the Art and Future Perspectives
,”
Renewable Sustainable Energy Rev.
,
89
, pp.
292
308
.
5.
Namiki
,
F.
,
Maeshima
,
T.
,
Inoue
,
K.
,
Kawai
,
H.
,
Saibara
,
S.
, and
Nanto
,
T.
,
2014
, “
Lithium-Ion Battery for HEVs, PHEVs, and EVs
,”
Hitachi Rev.
,
63
(
2
), pp.
103
108
.http://www.hitachi.com/rev/pdf/2014/r2014_02_107.pdf
6.
Hannan
,
M. A.
,
Hoque
,
M. M.
,
Peng
,
S. E.
, and
Uddin
,
M. N.
,
2017
, “
Lithium-Ion Battery Charge Equalization Algorithm for Electric Vehicle Applications
,”
IEEE Trans. Ind. Appl.
,
53
(
3
), pp.
2541
2549
.
7.
Bouchhima
,
N.
,
Schnierle
,
M.
,
Schulte
,
S.
, and
Birke
,
K. P.
,
2016
, “
Active Model-Based Balancing Strategy for Self-Reconfigurable Batteries
,”
J. Power Sources
,
322
, pp.
129
137
.
8.
Fitzgerald
,
G.
, and
Morris
,
J.
,
2014
, “
Battery Balance of System Charrette
,” Rocky Mountain Institute, Boulder, CO, Report No. 20150204.
9.
Mishra
,
P. P.
, and
Fathy
,
H. K.
,
2016
, “
Can Photovoltaic Battery Energy Storage Systems Be Self-Balancing?
,”
Dynamic Systems and Control Conference
, Boulder, CO, Report No. 20150204.
10.
Mishra
,
P. P.
, and
Fathy
,
H. K.
,
2019
, “
Achieving Self-Balancing by Design in Photovoltaic Energy Storage Systems
,”
IEEE Trans. Control Syst. Technol.
,
27
(
3
), pp.
1151
1164
.
11.
Mishra
,
P. P.
, and
Fathy
,
H. K.
,
2017
, “
Lithium-Ion Battery Disturbance Current Estimation, With Application to a Self-Balancing Photovoltaic Battery Storage System
,”
American Control Conference (ACC)
, Seattle, WA, May 24–26, pp.
4048
4054
.
12.
Villalva
,
M. G.
,
Gazoli
,
J. R.
, and
Filho
,
E. R.
,
2009
, “
Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays
,”
IEEE Trans. Power Electron.
,
24
(
5
), pp.
1198
1208
.
13.
Schweighofer
,
B.
,
Recheis
,
M.
,
Gallien
,
T.
, and
Wegleiter
,
H.
,
2013
, “
Fast and Accurate Battery Model Including Temperature Dependency
,” 39th Annual Conference of the IEEE Industrial Electronics Society (
IECON 2013
), Vienna, Austria, Nov. 10–13, pp.
6740
6745
.http://www.iecon2013.org/
14.
Femia
,
N.
,
Petrone
,
G.
,
Spagnuolo
,
G.
, and
Vitelli
,
M.
,
2005
, “
Optimization of Perturb and Observe Maximum Power Point Tracking Method
,”
IEEE Trans. Power Electron.
,
20
(
4
), pp.
963
973
.
15.
Brunton
,
S. L.
,
Rowley
,
C. W.
,
Kulkarni
,
S. R.
, and
Clarkson
,
C.
,
2010
, “
Maximum Power Point Tracking for Photovoltaic Optimization Using Ripple-Based Extremum Seeking Control
,”
IEEE Trans. Power Electron.
,
25
(
10
), pp.
2531
2540
.
16.
Tsang
,
K.
, and
Chan
,
W.
,
2013
, “
Model Based Rapid Maximum Power Point Tracking for Photovoltaic Systems
,”
Energy Convers. Manage.
,
70
, pp.
83
89
.
17.
Cristaldi
,
L.
,
Faifer
,
M.
,
Rossi
,
M.
, and
Toscani
,
S.
,
2014
, “
An Improved Model-Based Maximum Power Point Tracker for Photovoltaic Panels
,”
IEEE Trans. Instrum. Meas.
,
63
(
1
), pp.
63
71
.
18.
Kehs
,
M.
, and
Fathy
,
H.
,
2018
, “
Extremum Seeking for Plants With a Time-Varying Disturbance
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
1
), p.
011011
.
19.
Hariharan
,
K. S.
,
2013
, “
A Coupled Nonlinear Equivalent Circuit - Thermal Model for Lithium Ion Cells
,”
J. Power Sources
,
227
, pp.
171
176
.
20.
Hu
,
X.
,
Li
,
S.
, and
Peng
,
H.
,
2012
, “
A Comparative Study of Equivalent Circuit Models for li-Ion Batteries
,”
J. Power Sources
,
198
, pp.
359
367
.
21.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1526
1533
.
22.
Tanim
,
T. R.
,
Rahn
,
C. D.
, and
Wang
,
C.-Y.
,
2014
, “
A Temperature Dependent, Single Particle, Lithium Ion Cell Model Including Electrolyte Diffusion
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
1
), p.
011005
.
23.
Mishra
,
P. P.
,
Garg
,
M.
,
Mendoza
,
S.
,
Liu
,
J.
,
Rahn
,
C. D.
, and
Fathy
,
H. K.
,
2017
, “
How Does Model Reduction Affect Lithium-Ion Battery States of Charge Estimation Errors? Theory and Experiments
,”
J. Electrochem. Soc.
,
164
(
2
), pp.
A237
A251
.
24.
Gillijns
,
S.
, and
Moor
,
B. D.
,
2007
, “
Unbiased Minimum-Variance Input and State Estimation for Linear Discrete-Time Systems With Direct Feedthrough
,”
Automatica
,
43
(
5
), pp.
934
937
.
25.
Simon
,
D.
,
2006
, “
Linear Systems Theory
,”
Optimal State Estimation: Kalman, H-Infinity, and Nonlinear Approaches
,
Wiley
,
Hoboken, NJ
, Chap. 1.
26.
NREL
,
2018
, “National Renewable Energy Laboratory (NREL) National Wind Technology Center (M2),” National Wind Technology Center, Boulder, CO, accessed Nov. 1, 2017, https://midcdmz.nrel.gov/nwtc_m2/
You do not currently have access to this content.