This study extended the knowledge over the improvement of the control performance for a seven degrees-of-freedom (7DOF) humanoid arm. An improved adaptive Gaussian radius basic function neural network (RBFNN) approach was proposed to ensure the reliability and stability of the humanoid arm control. Considering model uncertainties, the established dynamic model for the humanoid arm was divided into a nominal model and an error model. The error model was approximated by the RBFNN learning to compensate the uncertainties. The contribution of this study mainly concentrates on employing fruit fly optimization algorithm (FOA) to optimize the basic width parameter of the RBFNN, which can enhance the capability of the error approximation speed. Additionally, the output weights of the neural network were adjusted using the Lyapunov stability theory to improve the robustness of the RBFN-based error model. The simulation and experiment results demonstrate that the proposed approach is able to optimize the system state with less tracking errors, regulate the uncertain nonlinear dynamic characteristics, and effectively reduce unexpected interferences.

References

1.
Paik
,
J. K.
,
Shin
,
B. H.
,
Bang
,
Y. B.
, and
Shim
,
Y. B.
,
2012
, “
Development of an Anthropomorphic Robotic Arm and Hand for Interactive Humanoids
,”
J. Biol. Eng.
,
9
(
2
), pp.
133
142
.
2.
Hoekstra
,
A.
,
Morgan
,
J.
,
Lurain
,
J.
,
Buttin
,
B.
,
Singh
,
D.
,
Schink
,
J.
, and
Lowe
,
M.
,
2009
, “
Robotic Surgery in Gynecologic Oncology: Impact on Fellowship Training
,”
Gynecol. Oncol.
,
114
(
2
), pp.
168
172
.
3.
Hirukawa
,
H.
,
2007
, “
Walking Biped Humanoids That Perform Manual Labour
,”
Philos. Trans.
,
365
(
1850
), pp.
65
77
.
4.
Zhou
,
L.
, and
Bai
,
S.
,
2015
, “
A New Approach to Design of a Lightweight Anthropomorphic Arm for Service Applications
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031001
.
5.
Sun
,
J.
, and
Zhang
,
W.
,
2012
, “
A Novel Coupled and Self-Adaptive Under-Actuated Multi-Fingered Hand With Gear–Rack–Slider Mechanism
,”
J. Manuf. Syst.
,
31
(
1
), pp.
42
49
.
6.
Driver
,
T. A.
, and
Shen
,
X.
,
2014
, “
Design and Control of a Sleeve Muscle-Actuated Robotic Elbow
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
4
), p.
041023
.
7.
Controzzi
,
M.
,
Cipriani
,
C.
,
Jehenne
,
B.
,
Donati
,
M.
, and
Carrozza
,
M. C.
,
2010
, “
Bio-Inspired Mechanical Design of a Tendon-Driven Dexterous Prosthetic Hand
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology
(
IEMBS
),
Buenos Aires, Argentina
, Aug. 31–Sept. 4, pp.
499
502
.
8.
Liu
,
H.
,
Cui
,
S.
,
Liu
,
Y.
,
Ren
,
Y.
, and
Sun
,
Y.
,
2018
, “
Design and Vibration Suppression Control of a Modular Elastic Joint
,”
Sensors
,
18
(
6
), p.
1869
.
9.
Kargov
,
A.
,
Asfour
,
T.
,
Pylatiuk
,
C.
, and
Oberle
,
R.
,
2005
, “
Development of an Anthropomorphic Hand for a Mobile Assistive Robot
,”
9th International Conference on Rehabilitation Robotics
(
ICORR
),
Chicago, IL
, June 28–July 1, pp.
182
186
.
10.
Wu
,
Q. C.
,
Wang
,
X. S.
, and
Du
,
F. P.
,
2016
, “
Analytical Inverse Kinematic Resolution of a Redundant Exoskeleton for Upper-Limb Rehabilitation
,”
Int. J. Human. Rob.
,
13
(
3
), p.
1550042
.
11.
Artemiadis
,
P. K.
,
Katsiaris
,
P. T.
, and
Kyriakopoulos
,
K. J.
,
2010
, “
A Biomimetic Approach to Inverse Kinematics for a Redundant Robot Arm
,”
Auton. Rob.
,
29
(
3–4
), pp.
293
308
.
12.
Mohan
,
V.
, and
Morasso
,
P.
,
2011
, “
Passive Motion Paradigm: An Alternative to Optimal Control
,”
Front. Neurorob.
,
5
, p.
4
.
13.
Bhat
,
A. A.
,
Akkaladevi
,
S. C.
,
Mohan
,
V.
,
Eitzinger
,
C.
, and
Morasso
,
P.
,
2017
, “
Towards a Learnt Neural Body Schema for Dexterous Coordination of Action in Humanoid and Industrial Robots
,”
Auton. Rob.
,
41
(
4
), pp.
945
966
.
14.
Wang
,
Y.
,
Shi
,
R.
, and
Wang
,
H.
,
2013
, “
Dynamic Modeling and Fuzzy Self-Tuning Disturbance Decoupling Control for a 3-Dof Serial-Parallel Hybrid Humanoid Arm
,”
Adv. Mech. Eng.
,
12
, p.
286074
.
15.
Otani
,
T.
,
Hashimoto
,
K.
,
Miyamae
,
S.
,
Ueta
,
H.
,
Natsuhara
,
A.
,
Sakaguchi
,
M.
,
Kawakami
,
Y.
,
Lim
,
H.-O.
, and
Takanishi
,
A.
,
2018
, “
Upper-Body Control and Mechanism of Humanoids to Compensate for Angular Momentum in the Yaw Direction Based on Human Running
,”
Appl. Sci.
,
8
(
1
), pp.
44
56
.
16.
Zhao
,
Y.
, and
Cheah
,
C. C.
,
2009
, “
Neural Network Control of Multifingered Robot Hands Using Visual Feedback
,”
IEEE Trans. Neural Network
,
20
(
5
), pp.
758
767
.
17.
Sanner
,
R. M.
, and
Slotine
,
J. E.
,
1992
, “
Gaussian Networks for Direct Adaptive Control
,”
IEEE Trans. Neural Network
,
3
(
6
), pp.
837
863
.
18.
Yoshikawa
,
T.
,
2010
, “
Multifingered Robot Hands: Control for Grasping and Manipulation
,”
Annu. Rev. Control
,
34
(
2
), pp.
199
208
.
19.
Hemmi
,
D.
,
Herrmann
,
G.
,
Na
,
J.
, and
Mahyuddin
,
M. N.
,
2015
, “
Adaptive Optimal Tracking Control Applied for a Humanoid Robot Arm
,”
IEEE International Symposium on Intelligent Control
(
ISIC
),
Sydney, NSW, Australia
, Sept. 21–23, pp.
35
40
.
20.
Simonidis
,
C.
, and
Seemann
,
W.
,
2008
, “
Recursive Control of a 7 Dof Robotic Arm
,”
PAMM
,
8
(
1
), pp.
10919
10920
.
21.
Schroder
,
J.
,
Kawamura
,
K.
, and
Gockel
,
T.
,
2003
, “
Improved Control of a Humanoid Arm Driven by Pneumatic Actuators
,”
IEEE-RAS International Conference on Humanoid Robots (Humanoids)
,
Las Vegas, NV
, Oct. 27–31, pp.
1
18
.
22.
Liu
,
Z.
,
Chen
,
C.
,
Zhang
,
Y.
, and
Chen
,
C. L. P.
,
2015
, “
Adaptive Neural Control for Dual-Arm Coordination of Humanoid Robot With Unknown Nonlinearities in Output Mechanism
,”
IEEE Trans. Cybern.
,
45
(
3
), p.
521
.
23.
Kondak
,
K.
,
Hommel
,
G.
,
Stanczyk
,
B.
, and
Buss
,
M.
,
2005
, “
Robust Motion Control for Robotic Systems Using Sliding Mode
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
),
Edmonton, AB, Canada
, Aug. 2–6, pp.
2375
2380
.
24.
Van Tran
,
T.
,
Wang
,
Y. N.
,
Ao
,
H. L.
, and
Khac Truong
,
T.
,
2015
, “
Sliding Mode Control Based on Chemical Reaction Optimization and Radial Basis Functional Link Net for De-Icing Robot Manipulator
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
5
), p.
051009
.
25.
Ahn
,
M. S.
,
Cho
,
S. H.
,
Oh
,
C. Y.
,
Lee
,
S. R.
, and
Yi
,
H.
,
2017
, “
Intelligent Controlof Humanoid Manipulation With Uncertain Weight Objects
,”
Int. J. Adv. Rob. Syst.
,
14
(
3
) (epub).
26.
Shibuya
,
Y.
, and
Maru
,
N.
,
2009
, “
Control of 6 DOF Arm of the Humanoid Robot by Linear Visual Servoing
,”
IEEE International Symposium on Industrial Electronics
(
ISIE
),
Seoul, South Korea
, July 5–8, pp.
1791
1796
.
27.
Su
,
Y.
, and
Zheng
,
C.
,
2019
, “
Fixed-Time Inverse Dynamics Control for Robot Manipulators
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
6
), p.
064502
.
28.
Liu
,
X. H.
,
Zheng
,
X. H.
,
Li
,
S. P.
,
Chen
,
X. H.
, and
Wang
,
Z. B.
,
2015
, “
Improved Adaptive Neural Network Control for Humanoid Robot Hand in Workspace
,”
J. Mech. Eng. Sci. Technol.
,
229
(
5
), pp.
869
881
.
29.
Yao
,
J.
,
Wang
,
X.
,
Hu
,
S.
, and
Fu
,
W.
,
2011
, “
Adaline Neural Network-Based Adaptive Inverse Control for an Electro-Hydraulic Servo System
,”
J. Vib. Control
,
17
(
13
), pp.
2007
2014
.
30.
Sefriti
,
S.
,
Boumhidi
,
J.
,
Naoual
,
R.
, and
Boumhidi
,
Y.
,
2012
, “
Adaptive Neural Network Sliding Mode Control for Electrically-Driven Robot Manipulators
,”
Control Eng. Appl. Inf.
,
14
(
4
), pp.
27
32
.
31.
Salahshoor
,
K.
,
Zakeri
,
S.
, and
Sefat
,
M. H.
,
2013
, “
Stabilization of Gas-Lift Oil Wells by a Nonlinear Model Predictive Control Scheme Based on Adaptive Neural Network Models
,”
Eng. Appl. Artif. Intell.
,
26
(
8
), pp.
1902
1910
.
32.
Guzey
,
H. M.
,
Xu
,
H.
, and
Jagannathan
,
S.
,
2015
, “
Neural Network-Based Adaptive Optimal Consensus Control of Leaderless Networked Mobile Robots
,”
IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning
(
ADPRL
),
Orlando, FL
, Dec. 9–12 pp.
295
300
.
33.
Mehraeen
,
S.
,
Jagannathan
,
S.
, and
Crow
,
M. L.
,
2012
, “
Decentralized State Feedback and Near Optimal Adaptive Neural Network Control of Interconnected Nonlinear Discrete-Time Systems
,”
49th IEEE Conference on Decision and Control
(
CDC
),
Atlanta, GA
, Dec. 15–17, pp.
6406
6411
.
34.
Zhang
,
Z. J.
,
Yan
,
Z. Y.
, and
Fu
,
T. Z.
,
2018
, “
Varying-Parameter RNN by Finite-Time Functions for Solving Joint-Drift Problems of Redundant Robot Manipulators
,”
IEEE Trans. Ind. Inf.
,
14
(
12
), pp.
5359
5367
.
35.
Cook
,
D. F.
,
Ragsdale
,
C. T.
, and
Major
,
R. L.
,
2000
, “
Combining a Neural Network With a Genetic Algorithm for Process Parameter Optimization
,”
Eng. Appl. Artif. Intell.
,
13
(
4
), pp.
391
396
.
36.
Xu
,
Y. Y.
,
Wang
,
Y.
, and
Xue
,
D. B.
,
2018
, “
Neural Network Control Optimization and Simulation of Robot Arm
,”
Chin. J. Constr. Mach.
,
16
(
5
), pp.
44
48
(in Chinese).
37.
Li
,
X.
,
Nishiguchi
,
J.
,
Minami
,
M.
, and
Matsuno
,
T.
,
2015
, “
Iterative Calculation Method for Constraint Motion by Extended Newton-Euler Method and Application for Forward Dynamics
,”
Eighth IEEE/SICE International Symposium on System Integration
(
SII
),
Nagoya, Japan
, Dec. 11–13, pp.
313
319
.
38.
Luo
,
L.
,
Wang
,
S.
,
Mo
,
J.
, and
Cai
,
J.
,
2006
, “
On the Modeling and Composite Control of Flexible Parallel Mechanism
,”
Int. J. Adv. Manuf. Technol.
,
29
(
7–8
), pp.
786
793
.
39.
Chen
,
C. S.
,
2008
, “
Dynamic Structure Neural-Fuzzy Networks for Robust Adaptive Control of Robot Manipulators
,”
IEEE Trans. Ind. Electron.
,
55
(
9
), pp.
3402
3414
.
40.
Zhu
,
D.
,
Mei
,
T.
, and
Luo
,
M.
,
2009
, “
Adaptive Sliding Mode Control for Robots Based on Fuzzy Support Vector Machines
,”
International Conference on Mechatronics and Automation
(
ICMA
),
Changchun, China
, Aug. 9–12, pp.
3469
3474
.
41.
Sepasi
,
D.
,
Nagamune
,
R.
, and
Sassani
,
F.
,
2012
, “
Tracking Control of Flexible Ball Screw Drives With Runout Effect and Mass Variation
,”
IEEE Trans. Ind. Electron.
,
59
(
2
), pp.
1248
1256
.
42.
Sage
,
H. G.
,
Mathelin
,
M. F. D.
, and
Ostertag
,
E.
,
1999
, “
Robust Control of Robot Manipulators: A Survey
,”
Int. J. Control
,
72
(
16
), pp.
1498
1522
.
43.
Lu
,
S. Y.
,
Zhou
,
Q. H.
, and
Li
,
Q. B.
,
2014
, “
RBF Neural Network Used on Universal Intelligent Monitoring System in Heavy Machinery
,”
Appl. Mech. Mater.
,
556–562
, pp.
3242
3245
.
44.
Moody
,
J.
, and
Darken
,
C. J.
,
1989
, “
Fast Learning in Networks of Locally-Tuned Processing Units
,”
Neural Comput.
,
1
(
2
), pp.
281
294
.
45.
Huang
,
S.
, and
Tan
,
K. K.
,
2012
, “
Intelligent Friction Modeling and Compensation Using Neural Network Approximations
,”
IEEE Trans. Ind. Electron.
,
59
(
8
), pp.
3342
3349
.
46.
Qu
,
J.
,
Zhang
,
F.
,
Fu
,
Y.
,
Li
,
G.
, and
Guo
,
S.
,
2017
, “
Adaptive Neural Network Visual Servoing of Dual-Arm Robot for Cyclic Motion
,”
Ind. Rob.
,
44
(
2
), pp.
210
221
.
47.
Li
,
Y. L.
,
Huang
,
P. W.
, and
Xie
,
T.
,
2013
, “
A Research on Adaptive Neural Network Control Strategy of Vehicle Yaw Stability
,”
Fourth International Conference on Intelligent Systems Design and Engineering Applications
(
ISDEA
),
Zhangjiajie, China
, Nov. 6–7, pp.
48
51
.
48.
Wei
,
M.
, and
Chen
,
G.
,
2011
, “
Adaptive RBF Neural Network Sliding Mode Control for Ship Course Control System
,”
Third International Conference on Intelligent Human-Machine Systems and Cybernetics
(
IHMC
),
Zhejiang, China
, Aug. 26–27, pp.
27
30
.
49.
Pan
,
W. T.
,
2012
, “
A New Fruit Fly Optimization Algorithm: Taking the Financial Distress Model as an Example
,”
Knowl.-Based Syst.
,
26
(
2
), pp.
69
74
.
You do not currently have access to this content.