This paper investigates the dynamic modeling and adaptive control of a single degree-of-freedom flexible cable-driven parallel robot (CDPR). A Rayleigh–Ritz cable model is developed that takes into account the changes in cable mass and stiffness due to its winding and unwinding around the actuating winch, with the changes distributed throughout the cables. The model uses a set of state-dependent basis functions for discretizing cables of varying length. A novel energy-based model simplification is proposed to further facilitate reduction in the computational load when performing numerical simulations involving the Rayleigh–Ritz model. For control purposes, the massive payload assumption is used to decouple the rigid and elastic dynamics of the system, and a modified input torque and modified output payload rate are used to develop a passive input–output map for the naturally noncollocated system. A passivity-based adaptive control law is derived to dynamically adapt to changes in cable properties and payload inertia, and different forms of the adaptive control law regressor are proposed. It is shown through numerical simulations that the adaptive controller is robust to changes in payload mass and cable properties, and the selection of the regressor form has a significant impact on the performance of the controller.

References

References
1.
Driscoll
,
F. R.
,
Lueck
,
R. G.
, and
Nahon
,
M.
,
2000
, “
Development and Validation of a Lumped-Mass Dynamics Model of a Deep-Sea ROV System
,”
Appl. Ocean Res.
,
22
(
3
), pp.
169
182
.
2.
Yuan
,
H.
,
Courteille
,
E.
,
Gouttefarde
,
M.
, and
Hervé
,
P.-E.
,
2017
, “
Vibration Analysis of Cable-Driven Parallel Robots Based on the Dynamic Stiffness Matrix Method
,”
J. Sound Vib.
,
394
, pp.
527
544
.
3.
Amare
,
Z.
,
Zi
,
B.
,
Qian
,
S.
,
Du
,
J.
, and
Ge
,
Q. J.
,
2018
, “
Three-Dimensional Static and Dynamic Stiffness Analyses of the Cable Driven Parallel Robot With Non-Negligible Cable Mass and Elasticity
,”
Mech. Based Des. Struct. Mach.
,
46
(
4
), pp.
455
482
.
4.
Pota
,
H. R.
, and
Vidyasagar
,
M.
,
1991
, “
Passivity of Flexible Beam Transfer Functions With Modified Outputs
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Sacramento, CA, Apr. 9–11, pp.
2826
2831
.
5.
De Luca
,
A.
,
Lucibello
,
P.
, and
Ulivi
,
G.
,
1989
, “
Inversion Techniques for Trajectory Control of Flexible Robot Arms
,”
J. Rob. Syst.
,
6
(
4
), pp.
325
344
.
6.
Damaren
,
C. J.
,
2003
, “
An Adaptive Controller for Two Cooperating Flexible Manipulators
,”
J. Rob. Syst.
,
20
(
1
), pp.
15
21
.
7.
Damaren
,
C. J.
,
1996
, “
Adaptive Control of Flexible Manipulators Carrying Large Uncertain Payloads
,”
J. Rob. Syst.
,
13
(
4
), pp.
219
228
.
8.
Damaren
,
C. J.
,
1996
, “
Approximate Inverse Dynamics and Passive Feedback for Flexible Manipulators With Large Payloads
,”
IEEE Trans. Rob. Autom.
,
12
(
1
), pp.
131
138
.
9.
Damaren
,
C. J.
,
2000
, “
Passivity and Noncollocation in the Control of Flexible Multibody Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
1
), pp.
11
17
.
10.
Babaghasabha
,
R.
,
Khosravi
,
M. A.
, and
Taghirad
,
H. D.
,
2016
, “
Adaptive Robust Control of Fully Constrained Cable Robots: Singular Perturbation Approach
,”
Nonlinear Dyn.
,
85
(
1
), pp.
607
620
.
11.
Lambert
,
C.
,
Nahon
,
M.
, and
Chalmers
,
D.
,
2007
, “
Implementation of an Aerostat Positioning System With Cable Control
,”
IEEE/ASME Trans. Mechatronics
,
12
(
1
), pp.
32
40
.
12.
Caverly
,
R. J.
, and
Forbes
,
J. R.
,
2014
, “
Dynamic Modeling and Noncollocated Control of a Flexible Planar Cable-Driven Manipulator
,”
IEEE Trans. Rob.
,
30
(
6
), pp.
1386
1397
.
13.
Caverly
,
R. J.
,
Forbes
,
J. R.
, and
Mohammadshahi
,
D.
,
2015
, “
Dynamic Modeling and Passivity-Based Control of a Single Degree of Freedom Cable-Actuated System
,”
IEEE Trans. Control Syst. Technol.
,
23
(
3
), pp.
898
909
.
14.
Zhang
,
Y.
,
Agrawal
,
S. K.
, and
Hagedorn
,
P.
,
2005
, “
Longitudinal Vibration Modeling and Control of a Flexible Transporter System With Arbitrarily Varying Cable Lengths
,”
Modal Anal.
,
11
(
3
), pp.
431
456
.
15.
Walsh
,
A.
, and
Forbes
,
J. R.
,
2015
, “
Modeling and Control of a Wind Energy Harvesting Kite With Flexible Cables
,”
American Control Conference
(
ACC
), Chicago, IL, July 1–3, pp.
2383
2388
.
16.
Miermeister
,
P.
,
Lächele
,
M.
,
Boss
,
R.
,
Masone
,
C.
,
Schenk
,
C.
,
Tesch
,
J.
,
Kerger
,
M.
,
Teufel
,
H.
,
Pott
,
A.
, and
Bülthoff
,
H. H.
,
2016
, “
The CableRobot Simulator Large Scale Motion Platform Based on Cable Robot Technology
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Daejeon, South Korea, Oct. 9–14, pp.
3024
3029
.
17.
Zhu
,
W. D.
, and
Chen
,
Y.
,
2006
, “
Theoretical and Experimental Investigation of Elevator Cable Dynamics and Control
,”
ASME J. Vib. Acoust.
,
128
(
1
), pp.
66
78
.
18.
Cartmell
,
M. P.
, and
McKenzie
,
D. J.
,
2008
, “
A Review of Space Tether Research
,”
Prog. Aerosp. Sci.
,
44
(
1
), pp.
1
21
.
19.
Do
,
K. D.
, and
Pan
,
J.
,
2008
, “
Boundary Control of Transverse Motion of Marine Risers With Actuator Dynamics
,”
J. Sound Vib.
,
318
(
4–5
), pp.
768
791
.
20.
Ni
,
Y. Q.
,
Lou
,
W. J.
, and
Ko
,
J. M.
,
2000
, “
A Hybrid Pseudo-Force/Laplace Transform Method for Non-Linear Transient Response of a Suspended Cable
,”
J. Sound Vib.
,
238
(
2
), pp.
189
214
.
21.
Naerum
,
E.
,
King
,
H. H.
, and
Hannaford
,
B.
,
2009
, “
Robustness of the Unscented Kalman Filter for State and Parameter Estimation in an Elastic Transmission
,”
Robotics: Science and Systems
, Seattle, WA, June 28--July 1, Paper No. 25.http://www.roboticsproceedings.org/rss05/p25.pdf
22.
Abdolshah
,
S.
, and
Rosati
,
G.
,
2015
, “
First Experimental Testing of a Dynamic Minimum Tension Control (DMTC) for Cable Driven Parallel Robots
,”
Cable-Driven Parallel Robots: Proceedings of the Second International Conference on Cable-Driven Parallel Robots
(Mechanisms and Machine Series, Vol.
32
),
Springer International
,
Cham, Switzerland
, pp.
239
248
.
23.
Rushton
,
M.
, and
Khajepour
,
A.
,
2018
, “
Transverse Vibration Control in Planar Cable-Driven Robotic Manipulators
,”
Cable-Driven Robots: Proceedings of the Third International Conference on Cable-Driven Parallel Robots
(Mechanisms and Machine Series, Vol.
53
),
Springer International
,
Cham, Switzerland
, pp.
243
253
.
24.
Cuevas
,
J. I. A.
,
Laroche
,
E.
, and
Piccin
,
O.
,
2018
, “
Assumed-Mode-Based Dynamic Model for Cable Robots With Non-Straight Cables
,”
Cable-Driven Robots: Proceedings of the Third International Conference on Cable-Driven Parallel Robots
(Mechanisms and Machine Series, Vol.
53
),
Springer International
,
Cham, Switzerland
, pp.
15
25
.
25.
Godbole
,
H. A.
,
Caverly
,
R. J.
, and
Forbes
,
J. R.
,
2018
, “
Modelling of Flexible Cable-Driven Parallel Robots Using a Rayleigh-Ritz Approach
,”
Cable-Driven Robots: Proceedings of the Third International Conference on Cable-Driven Parallel Robots
, (Mechanisms and Machine Series, Vol.
53
),
Springer International
,
Cham, Switzerland
, pp.
3
14
.
26.
Laulusa
,
A.
, and
Bauchau
,
O. A.
,
2008
, “
Review of Classical Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011004
.
27.
Caverly
,
R. J.
, and
Forbes
,
J. R.
,
2018
, “
Flexible Cable-Driven Parallel Manipulator Control: Maintaining Positive Cable Tensions
,”
IEEE Trans. Control Syst. Technol.
,
26
(
5
), pp.
1874
1883
.
28.
Ortega
,
R.
, and
Spong
,
M. W.
,
1989
, “
Adaptive Motion Control of Rigid Robots: A Tutorial
,”
Automatica
,
25
(
6
), pp.
877
888
.
29.
Marquez
,
H.
,
2003
,
Nonlinear Control Systems: Analysis and Design
,
Wiley
,
Hoboken, NJ
.
30.
Brogliato
,
B.
,
Lozano
,
R.
,
Maschke
,
B.
, and
Egeland
,
O.
,
2007
,
Dissipative Systems Analysis and Control: Theory and Applications
,
2nd ed.
,
Springer-Verlag
,
London
.
31.
Sanderson
,
C.
, and
Curtin
,
R.
,
2016
, “
Armadillo: A Template-Based C++ Library for Linear Algebra
,”
J. Open Source Software
,
1
(
2
), pp.
26
32
.
32.
Damaren
,
C. J.
,
1998
, “
Modal Properties and Control System Design for Two-Link Flexible Manipulators
,”
Int. J. Rob. Res.
,
17
(
6
), pp.
667
678
.
33.
Forbes
,
J. R.
, and
Damaren
,
C. J.
,
2013
, “
Synthesis of Optimal Finite-Frequency Controllers Able to Accommodate Passivity Violations
,”
IEEE Trans. Control Syst. Technol.
,
21
(
5
), pp.
1808
1819
.
You do not currently have access to this content.