This paper presents an extended state observer (ESO) based robust friction compensation scheme for trajectory tracking control of a three-wheeled omnidirectional mobile robot. The proposed approach is practical in implementation, with no friction model required and only three parameters to be tuned. First, a dynamic model with unknown friction forces is given for the robot. Then, the controller is designed, consisting of two parts. One part of the control effort is to compensate the friction effects, which are estimated by ESO without using any friction model. The other part of the control effort is designed based on traditional resolved acceleration control to achieve the trajectory tracking goals. In addition, stability analysis of the designed control system is presented. Extensive simulations and experiments are conducted to validate the proposed control system design in compensating different friction forces.

References

1.
Song
,
J.-B.
, and
Byun
,
K.-S.
,
2004
, “
Design and Control of a Four-Wheeled Omnidirectional Mobile Robot With Steerable Omnidirectional Wheels
,”
J. Robot. Syst.
,
21
(
4
), pp.
193
208
.
2.
Bona
,
B.
, and
Indri
,
M.
,
2005
, “
Friction Compensation in Robotics: An Overview
,”
IEEE Conference on Decision and Control
(
CDC
),
Seville, Spain
,
Dec. 12–15
, pp.
4360
4367
.
3.
Williams
,
L. R.
,
Carter
,
B. E.
,
Gallina
,
P.
, and
Rosati
,
G.
,
2002
, “
Dynamic Model With Slip for Wheeled Omnidirectional Robots
,”
IEEE Trans. Robot. Automat.
,
18
(
3
), pp.
285
293
.
4.
Watanabe
,
K.
,
Shiraishi
,
Y.
,
Tzafestas
,
S.
,
Tang
,
J.
, and
Fukuda
,
T.
,
1998
, “
Feedback Control of an Omnidirectional Autonomous Platform for Mobile Service Robots
,”
J. Intell. Robot. Syst.
,
22
(
3/4
), pp.
315
330
.
5.
Liu
,
Y.
,
Zhu
,
J. J.
,
Willaims
,
R. L.
, II.
, and
Wu
,
J.
,
2008
, “
Omni-Directional Mobile Robot Controller Based on Trajectory Linearization
,”
Robot. Auton. Syst.
,
56
(
5
), pp.
461
479
.
6.
Huang
,
J.-T.
,
Hung
,
T.
, and
Tseng
,
M.-L.
,
2015
, “
Smooth Switching Robust Adaptive Control for Omnidirectional Mobile Robots
,”
IEEE Trans. Control Syst. Technol.
,
23
(
5
), pp.
1986
1993
.
7.
Conceicao
,
A.
,
Moreira
,
A.
, and
Costa
,
P.
,
2009
, “
Practical Approach of Modeling and Parameters Estimation for Omnidirectional Mobile Robots
,”
IEEE/ASME Trans. Mechatronics
,
14
(
3
), pp.
377
381
.
8.
Barreto S.
,
J. C. L.
,
Conceicao
,
A. G. S.
,
Dorea
,
C. E. T.
,
Martinez
,
L.
, and
de Pieri
,
E. R.
,
2014
, “
Design and Implementation of Model-Predictive Control With Friction Compensation on an Omnidirectional Mobile Robot
,”
IEEE/ASME Trans. Mechatronics
,
19
(
2
), pp.
467
476
.
9.
Rotondo
,
D.
,
Puig
,
V.
,
Nejjari
,
F.
, and
Romera
,
J.
,
2015
, “
A Fault-Hiding Approach for the Switching Quasi-Lpv Fault-Tolerant Control of a Four-Wheeled Omnidirectional Mobile Robot
,”
IEEE Trans. Ind. Electron
,
62
(
6
), pp.
3932
3944
.
10.
Comasolivas
,
R.
,
Quevedo
,
J.
,
Escobet
,
T.
,
Escobet
,
A.
, and
Romera
,
J.
,
2017
, “
Modeling and Robust Low Level Control of an Omnidirectional Mobile Robot
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
4
), p.
041011
.
11.
Kang
,
M. S.
,
1998
, “
Robust Digital Friction Compensation
,”
Control Eng. Pract.
,
6
(
3
), pp.
359
367
.
12.
Kostic
,
D.
,
de Jager
,
B.
,
Steinbuch
,
M.
, and
Hensen
,
R.
,
2004
, “
Modeling and Identification for High-Performance Robot Control: An RRR-Robotic Arm Case Study
,”
IEEE Trans. Control Syst. Technol.
,
12
(
6
), pp.
904
919
.
13.
Chen
,
W.-H.
,
Ballance
,
D.
,
Gawthrop
,
P.
, and
O'Reilly
,
J.
,
2000
, “
A Nonlinear Disturbance Observer for Robotic Manipulators
,”
IEEE Trans. Ind. Electron.
,
47
(
4
), pp.
932
938
.
14.
Armstrong
,
B.
,
Neevel
,
D.
, and
Kusik
,
T.
,
2001
, “
New Results in NPID Control: Tracking, Integral Control, Friction Compensation and Experimental Results
,”
IEEE Trans. Control Syst. Technol.
,
9
(
2
), pp.
399
406
.
15.
Han
,
J.
,
2009
, “
From PID to Active Disturbance Rejection Control
,”
IEEE Trans. Ind. Electron
,
56
(
3
), pp.
900
906
.
16.
Radke
,
A.
, and
Gao
,
Z.
,
2006
, “
A Survey of State and Disturbance Observers for Practitioners
,”
American Control Conference
(
ACC
),
Minneapolis, MN
,
June 14–16
, pp.
5183
5188
.
17.
Du
,
B.
,
Wu
,
S.
,
Han
,
S.
, and
Cui
,
S.
,
2016
, “
Application of Linear Active Disturbance Rejection Controller for Sensorless Control of Internal Permanent-Magnet Synchronous Motor
,”
IEEE Trans. Ind. Electron
,
63
(
5
), pp.
3019
3027
.
18.
Li
,
H.
,
Zheng
,
S.
, and
Ning
,
X.
,
2017
, “
Precise Control for Gimbal System of Double Gimbal Control Moment Gyro Based on Cascade Extended State Observer
,”
IEEE Trans. Ind. Electron.
,
64
(
6
), pp.
4653
4661
.
19.
Liu
,
C.
,
Liu
,
G.
, and
Fang
,
J.
,
2017
, “
Feedback Linearization and Extended State Observer-Based Control for Rotor-Ambs System With Mismatched Uncertainties
,”
IEEE Trans. Ind. Electron.
,
64
(
2
), pp.
1313
1322
.
20.
Liu
,
J.
,
Vazquez
,
S.
,
Wu
,
L.
,
Marquez
,
A.
,
Gao
,
H.
, and
Franquelo
,
L. G.
,
2017
, “
Extended State Observer-Based Sliding-Mode Control for Three-Phase Power Converters
,”
IEEE Trans. Ind. Electron.
,
64
(
1
), pp.
22
31
.
21.
Wang
,
B.
,
Xu
,
Y.
,
Shen
,
Z.
,
Zou
,
J.
,
Li
,
C.
, and
Liu
,
H.
,
2017
, “
Current Control of Grid-Connected Inverter With LCL Filter Based on Extended-State Observer Estimations Using Single Sensor and Achieving Improved Robust Observation Dynamics
,”
IEEE Trans. Ind. Electron.
,
64
(
7
), pp.
5428
5439
.
22.
Cui
,
R.
,
Chen
,
L.
,
Yang
,
C.
, and
Chen
,
M.
,
2017
, “
Extended State Observer-Based Integral Sliding Mode Control for an Underwater Robot With Unknown Disturbances and Uncertain Nonlinearities
,”
IEEE Trans. Ind. Electron
,
64
(
8
), pp.
6785
6795
.
23.
Ren
,
C.
, and
Ma
,
S.
,
2016
, “
Trajectory Tracking Control of an Omnidirectional Mobile Robot With Friction Compensation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
),
Daejeon, South Korea
,
Oct. 9–14
, pp.
5361
5366
.
24.
Ma
,
S.
,
Ren
,
C.
, and
Ye
,
C.
,
2012
, “
An Omnidirectional Mobile Robot: Concept and Analysis
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
),
Guangzhou, China
,
Dec. 11–14
, pp.
920
925
.
25.
Ren
,
C.
, and
Ma
,
S.
,
2013
, “
Dynamic Modeling and Analysis of an Omnidirectional Mobile Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
),
Tokyo, Japan
,
Nov. 3–7
, pp.
4860
4865
.
26.
Olsson
,
H.
,
Åström
,
K.
,
de Wit
,
C. C.
,
Gäfvert
,
M.
, and
Lischinsky
,
P.
,
1998
, “
Friction Models and Friction Compensation
,”
Eur. J. Control
,
4
(
3
), pp.
176
195
.
27.
Gao
,
Z.
,
2003
, “
Scaling and Bandwidth-Parameterization Based Controller Tuning
,”
American Control Conference
(
ACC
),
Denver, CO
,
June 4–6
, pp.
4989
4996
.https://ieeexplore.ieee.org/document/1242516
28.
Zheng
,
Q.
,
Chen
,
Z.
, and
Gao
,
Z.
,
2009
, “
A Practical Approach to Disturbance Decoupling Control
,”
Control Eng. Pract.
,
17
(
9
), pp.
1016
1025
.
29.
Chung
,
Y.
,
Park
,
C.
, and
Harashima
,
F.
,
2001
, “
A Position Control Differential Drive Wheeled Mobile Robot
,”
IEEE Trans. Ind. Electron.
,
48
(
4
), pp.
853
863
.
30.
Yang
,
S. X.
,
Zhu
,
A.
,
Yuan
,
G.
, and
Meng
,
M.-H.
,
2012
, “
A Bioinspired Neurodynamics-Based Approach to Tracking Control of Mobile Robots
,”
IEEE Trans. Ind. Electron.
,
59
(
8
), pp.
3211
3220
.
You do not currently have access to this content.