This paper is aimed to propose a multiloop control scheme for fractional order multi-input multi-output (FO-MIMO) systems. It is an extension of the FO-multiloop controller design method developed for integer order multivariable systems to FO-MIMO ones. The interactions among the control loops are considered as disturbances and a two degrees-of-freedom (2DOF) paradigm is used to deal with the process outputs performance and the interactions reduction effect, separately. The proposed controller design method is simple, in relation with the desired closed-loop specifications and a tuning parameter. It presents an interest in controlling complex MIMO systems since fractional order models (FO-models) represent some real processes better than integer order ones and high order systems can be approximated by FO-models. Two examples are considered and compared with other existing methods to evaluate the proposed controller.

References

References
1.
Merrikh-Bayat
,
F.
,
2018
, “
Multivariable Proportional-Integral-Derivative Controller Tuning Via Linear Matrix Inequalities Based on Minimizing the Nonconvexity of Linearized Bilinear Matrix Inequalities
,”
ASME J. Dyn. Sys., Meas., Control
,
140
(
11
), p.
111012
.
2.
Estvez-Sanchez
,
K. H.
,
Sampieri-Croda
,
A.
,
Garca-Alvarado
,
M. A.
, and
Ruiz-Lpez
,
I. I.
,
2017
, “
Design of Multiloop PI Controllers Based on Quadratic Optimal Approach
,”
ISA Trans.
,
70
, pp.
338
347
.
3.
Nie
,
Z. Y.
,
Wang
,
Q. G.
,
Wu
,
M.
, and
He
,
Y.
,
2011
, “
Tuning of Multi-Loop PI Controllers Based on Gain and Phase Margin Specifications
,”
J. Process Control
,
21
(
9
), pp.
1287
1295
.
4.
Kanagasabai
,
N.
, and
Jaya
,
N.
,
2014
, “
Design of Multiloop Controller for Three Tank Process Using CDM Techniques
,”
Int. J. Soft Comput.
,
5
(
2
), pp.
11
20
.
5.
Luyben
,
W.
,
1986
, “
Simple Method for Tuning SISO Controllers in Multivariable Systems
,”
Ind. Eng. Chem. Process Des. Develop.
,
25
(
3
), pp.
654
660
.
6.
Economou
,
C. G.
, and
Morari
,
M.
,
1986
, “
Internal Model Control: Multiloop Design
,”
Ind. Eng. Chem. Process Des. Develop.
,
25
(
2
), pp.
411
419
.
7.
Nandong
,
J.
, and
Zang
,
Z.
,
2014
, “
Multi-Loop Design of Multi-Scale Controllers for Multivariable Processes
,”
J. Process Control
,
24
(
5
), pp.
600
612
.
8.
Besta
,
C. S.
, and
Chidambaram
,
M.
,
2017
, “
Improved Decentralized Controllers for Stable Systems by IMC Method
,”
Indian Chem. Eng.
, (epub).
9.
Morari
,
M.
, and
Zafiriou
,
M.
,
1989
,
Robust Process Control
,
Prentice Hall
,
Englewood Cliff, NJ
.
10.
Rivera
,
D. E.
,
Morari
,
M.
, and
Skogestad
,
S.
,
1986
, “
Internal Model Control: PID Controller Design
,”
Ind. Eng. Chem. Process Des. Develop.
,
25
(
1
), pp.
252
265
.
11.
Sheng
,
H.
,
Chen
,
Y. Q.
, and
Qiu
,
T. S.
,
2011
,
Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications
,
Springer Science & Business Media
,
London, UK
.
12.
Caponetto
,
R.
,
2010
,
Fractional Order Systems Modeling and Control Applications
, Vol.
72
World Scientific
,
Singapore
.
13.
Hilfer
,
R.
,
2000
,
Applications of Fractional Calculus in Physics
,
World Scientific
,
Singapore
.
14.
Oustaloup
,
A.
,
1991
,
La Commande CRONE
,
Hermès Editions
,
Paris, France
.
15.
Podlubny
,
I.
,
1999
, “
Fractional-Order-Systems and PI α D μ Controller
,”
IEEE Trans. Autom. Control
,
44
(
1
), pp.
208
214
.
16.
Bettayeb
,
M.
, and
Mansouri
,
R.
,
2014
, “
IMC-PID-Fractional-Order-Filter Controller Design for Integer Order Systems
,”
ISA Trans.
,
53
(
5
), pp.
1620
1628
.
17.
Amoura
,
K.
,
Mansouri
,
R.
,
Bettayeb
,
M.
, and
Al-Saggaf
,
U. M.
,
2016
, “
Closed-Loop Step Response for Tuning PID-Fractional-Order-Filter Controllers
,”
ISA Trans.
,
64
, pp.
247
257
.
18.
Bettayeb
,
M.
, and
Mansouri
,
R.
,
2014
, “
Fractional IMC-PID-Filter Controllers Design for Non Integer Order Systems
,”
J. Process Control
,
24
(
4
), pp.
261
271
.
19.
Titouche
,
K.
,
Mansouri
,
R.
,
Bettayeb
,
M.
, and
Al-Saggaf
,
U. M.
,
2016
, “
Internal Model Control Proportional Integral Derivative Fractional Order Filter Controllers Design for Unstable Delay Systems
,”
ASME J. Dyn. Sys., Meas., Control
,
138
(
2
), p.
021006
.
20.
Bettayeb
,
M.
,
Mansouri
,
R.
,
Al-Saggaf
,
U. M.
, and
Mehedi
,
I. M.
,
2017
, “
Smith Predictor Based Fractional Order Filter PID Controllers Design for Long Time Delay Systems
,”
Asian J. Control
,
19
(2), pp. 587–598.
21.
Li
,
M.
,
Zhoo
,
P.
,
Zhao
,
Z.
, and
Zhang
,
J.
,
2016
, “
Two Degrees-of-Freedom Fractional Order PID Controllers Design for Fractional Order Processes With Dead Time
,”
ISA Trans.
,
61
, pp.
147
154
.
22.
Dwivedi
,
P.
,
Pandey
,
S.
, and
Junghare
,
A.
,
2017
, “
Performance Analysis and Experimental Validation of 2DOF Fractional-Order Controller for Underactuated Rotary Inverted Pendulum
,”
Arabian J. Sci. Eng.
,
42
(12), pp. 5121–5145.
23.
Rahimian
,
M. A.
, and
Tavazoei
,
M. S.
,
2013
, “
Optimal Tuning for Fractional-Order Controllers: An Integer-Order Approximating Filter Approach
,”
ASME J. Dyn. Sys., Meas., Control
,
135
(
2
), p.
021017
.
24.
Wei
,
Y.
,
Du
,
B.
,
Cheng
,
S.
, and
Wang
,
Y.
,
2017
, “
Fractional Order Systems Time-Optimal Control and Its Application
,”
J. Optim. Theory Appl.
,
174
(
1
), pp.
122
138
.
25.
Chen
,
Y.
,
Wei
,
Y.
, and
Wang
,
Y.
,
2018
, “
On 2 Types of Robust Reaching Laws
,”
Int. J. Robust Nonlinear Control
,
28
(
6
), pp.
2651
2667
.
26.
Sheng
,
D.
,
Wei
,
Y.
,
Cheng
,
S.
, and
Shuai
,
J.
,
2017
, “
Adaptive Backstepping Control for Fractional Order Systems With Input Saturation
,”
J. Franklin Inst.
,
354
(
5
), pp.
2245
2268
.
27.
Zhou
,
X.
,
Wei
,
Y.
,
Liang
,
S.
, and
Wang
,
Y.
,
2017
, “
Robust Fast Controller Design Via Nonlinear Fractional Differential Equations
,”
ISA Trans.
,
69
, pp.
20
30
.
28.
Yin
,
C.
,
Huang
,
X.
,
Chen
,
Y.
,
Dadras
,
S.
,
Zhong
,
S. M.
, and
Cheng
,
Y.
,
2017
, “
Fractional-Order Exponential Switching Technique to Enhance Sliding Mode Control
,”
Appl. Math. Modell.
,
44
, pp.
705
726
.
29.
Muresan
,
C. I.
,
Dutta
,
A.
,
Dulf
,
E. H.
,
Pinar
,
Z.
,
Maxim
,
A.
, and
Ionescu
,
C. M.
,
2016
, “
Tuning Algorithms for Fractional Order Internal Model Controllers for Time Delay Processes
,”
Int. J. Control
,
89
(
3
), pp.
579
593
.
30.
Sivananaithaperumal
,
S.
, and
Baskar
,
S.
,
2014
, “
Design of Multivariable Fractional Order PID Controller Using Covariance Matrix Adaptation Evolution Strategy
,”
Arch. Control Sci.
,
24
(
2
), pp.
235
251
.
31.
Chekari
,
T.
,
Mansouri
,
R.
, and
Bettayeb
,
M.
,
2018
, “
IMC-PID Fractional Order Filter Multiloop Controller Design for Multivariable Systems Based on Two Degrees-of-Freedom Control Scheme
,”
Int. J. Control, Autom. Syst.
,
16
(
2
), pp.
689
701
.
32.
Li
,
Z.
,
2015
, “
Fractional Order Modeling and Control of Multi-Input-Multi-Output Processes
,”
Ph.D. dissertation
, University of California, Merced, CA.https://escholarship.org/uc/item/49x9x167
33.
Gruel
,
D. N.
,
Lanusse
,
P.
, and
Oustaloup
,
A.
,
2009
, “
Robust Control Design for Multivariable Plants With Time-Delay
,”
Chem. Eng. J.
,
14
(
3
), pp.
414
427
.
34.
Muresan
,
C. I.
,
De Keyser
,
R.
, and
Ionescu
,
C. I.
,
2016
, “
Autotuning Method for a Fractional Order Controller for a Multivariable 13C Isotope Separation Column
,”
European Control Conference
, Denmark, pp.
358
363
.
35.
Li
,
Z.
, and
Chen
,
Y. Q.
,
2014
, “
Ideal Simplified and Inverted Decoupling of Fractional Order TITO Processes
,”
IFAC Proc.
47
(3), pp. 2897–2902.
36.
Dworak
,
P.
,
2016
, “
On Dynamic Decoupling of MIMO Fractional Order Systems
,”
Theoretical Developments and Applications of Non Integer Order Systems
, Vol.
357
,
Springer International Publishing
,
Cham, Switzerland
, pp.
217
232
.
37.
Li
,
D.
, and
He
,
X.
,
2017
, “
The Inverted Decoupling Based Fractional Order Two-Input-Two-Output IMC Controller
,”
ASME
Paper No. DETC2017-67634
.
38.
Xue
,
D.
,
Li
,
T.
, and
Liu
,
L.
,
2017
, “
A MATLAB Toolbox for Multivariable Linear Fractional-Order Control Systems
,”
29th Chinese Control and Decision Conference
(
CCDC
), Chongqing, China, May 28–30, pp.
1894
1899
.
39.
Wang
,
D.
, and
Zhang
,
R.
,
2018
, “
Design of Distributed PID-Type Dynamic Matrix Controller for Fractional-Order Systems
,”
Int. J. Syst. Sci.
,
49
(
2
), pp.
435
448
.
40.
Bristol
,
E. H.
,
1966
, “
On a New Measure of Interaction for Multivariable Process Control
,”
IEEE Trans. Autom. Control
,
11
(
1
), pp.
133
134
.
41.
Skogested
,
S.
, and
Postlethewaite
,
I.
,
2007
,
Multivariable Feedback Control Analysis and Design
,
2nd ed.
,
Wiley
,
New York
.
42.
Podlubny
,
I.
,
1998
,
Fractional Differential Equations: An Introduction to Fractional Derivative, Fractional Differential Equations, to Methods of Their Solutions and Some of Their Applications
, Vol.
198
,
Academic Press
,
San Diego, CA
.
43.
Wang
,
Q. G.
,
Ye
,
Z.
,
Cai
,
W. J.
, and
Hang
,
C. C.
,
2008
,
PID Control for Multivariable Processes
, Vol.
373
,
Springer Science & Business Media
,
Berlin, Germany
.
You do not currently have access to this content.