This paper deals with the design of fixed-structure controllers for two-input two-output (TITO) systems using frequency-domain data. In standard control approaches, a plant model is first derived, then a suitable controller is designed to meet some user-specified performance specifications. Basically, there are two common ways for obtaining mathematical models: white-box modeling and black-box modeling. In both approaches, it is difficult to obtain a simple and accurate model that completely describes the system dynamics. As a result, errors associated with the plant modeling may result in degradation of the desired closed-loop performance. Moreover, the intermediate step of plant modeling introduced for the controller design is a time-consuming task. Hence, the concept of data-based control design is introduced as a possible alternative to model-based approaches. This promising methodology allows us to avoid the under-modeling problem and to significantly reduce the time and workload for the user. Most existing data-based control approaches are developed for single-input single-output (SISO) systems. Nevertheless, a large class of real systems involve several manipulated and output variables. To this end, we attempt here to develop an approach to design controllers for TITO systems using frequency-domain data. In such a method, a set of frequency-domain data is utilized to find an adequate decoupler and to tune a diagonal controller that meets some desired closed-loop performance measures. Two simulation examples are presented to illustrate and demonstrate the efficacy of the proposed method.

References

References
1.
Ho
,
W.
,
Hang
,
C.
, and
Cao
,
L.
,
1995
, “
Tuning of Pid Controllers Based on Gain and Phase Margin Specifications
,”
Automatica
,
31
(
3
), pp.
497
502
.
2.
Schrama
,
R.
,
1992
, “
Accurate Identification for Control: The Necessity of an Iterative Scheme
,”
IEEE Trans. Autom. Control
,
37
(
7
), pp.
991
994
.
3.
Muske
,
K.
,
Jones
,
J.
, and
Franceschi
,
E.
,
2008
, “
Adaptive Analytical Model-Based Control for SI Engine Air-Fuel Ratio
,”
IEEE Trans. Control Syst. Technol.
,
16
(
4
), pp.
763
768
.
4.
Goberdhansingh
,
E.
,
Wang
,
L.
, and
Cluett
,
W.
,
1989
, “
Robust Frequency Domain Identification
,”
Chem. Eng. Sci.
,
47
(
8
), pp.
1989
1999
.
5.
Athans
,
M.
,
Rohrs
,
C.
,
Valavani
,
L.
, and
Stein
,
G.
,
1982
, “
Robustness of Adaptive Control Algorithms in the Presence of Unmodelled Dynamics
,”
IEEE
Conference on Decision and Control
, Orlando, FL, Dec. 8–10, pp.
3
11
.
6.
Hjalmarsson
,
H.
,
Gevers
,
M.
,
Gunnarsson
,
S.
, and
Lequin
,
O.
,
1998
, “
Iterative Feedback Tuning: Theory and Application
,”
IEEE Control Syst. Mag.
,
18
(4), pp.
26
41
.
7.
Campi
,
M.
,
Lecchini
,
A.
, and
Savaresi
,
S.
,
2002
, “
Virtual Reference Feedback Tuning: A Direct Method for the Design of Feedback Controllers
,”
Automatica
,
38
(
8
), pp.
1337
1346
.
8.
Spall
,
J.
, and
Cristion
,
J.
,
1998
, “
Model-Free Control of Nonlinear Stochastic Systems With Discrete-Time Measurements
,”
IEEE Trans. Autom. Control
,
43
(
9
), pp.
1198
1210
.
9.
Karimi
,
A.
,
Miskovic
,
L.
, and
Bonvin
,
D.
,
2004
, “
Iterative Correlation-Based Controller Tuning
,”
Int. J. Adapt. Control Signal Process.
,
18
(
8
), pp.
645
664
.
10.
Hou
,
Z.
, and
Jin
,
S.
,
2011
, “
A Novel Data-Driven Control Approach for a Class of Discrete-Time Nonlinear Systems
,”
Trans. Control Syst. Technol.
,
19
(
6
), pp.
1549
1558
.
11.
Ahn
,
H.
,
Chen
,
Y.
, and
Moore
,
K.
,
2007
, “
Iterative Learning Control: Brief Survey and Categorization
,”
IEEE Trans. Syst., Man, Cybern. Part C: Appl. Rev.
,
37
(
6
), pp.
1099
1121
.
12.
van Heusden
,
K.
,
Karimi
,
A.
, and
Bonvin
,
D.
,
2011
, “
Data-Driven Model Reference Control With Asymptotically Guaranteed Stability
,”
Int. J. Adapt. Control Signal Process.
,
25
(
4
), pp.
331
351
.
13.
Keel
,
L.
, and
Bhattacharyya
,
S.
,
2008
, “
Controller Synthesis Free of Analytical Models: Three Term Controllers
,”
IEEE Trans. Autom. Control
,
53
(
6
), pp.
1353
1369
.
14.
Kallakuri
,
P.
,
Keel
,
L.
, and
Bhattacharyya
,
S.
,
2011
, “
Data Based Design of Pid Controllers for a Magnetic Levitation Experiment
,”
IFAC Proceedings Volumes
,
44
(1), pp. 10231–10236.
15.
Garcia
,
D.
,
Karimi
,
A.
, and
Longchamp
,
R.
,
2006
, “
Data-Driven Controller Tuning Using Frequency Domain Specifications
,”
Ind. Eng. Chem. Res.
,
45
(
12
), pp.
4032
4042
.
16.
den Hamer
,
A.
,
2010
, “
Data-Driven Optimal Controller Synthesis: A Frequency Domain Approach
,” Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.
17.
Karimi
,
A.
, and
Galdos
,
G.
,
2010
, “
Fixed-Order h∞ Controller Design for Nonparametric Models by Convex Optimization
,”
Automatica
,
46
(
8
), pp.
1388
1394
.
18.
den Hamer
,
A.
,
Weiland
,
S.
, and
Steinbuch
,
M.
,
2009
, “
Model-Free Norm-Based Fixed Structure Controller Synthesis
,”
48th IEEE Conference on Decision and Control (CDC) Held Jointly With the 28th Chinese Control Conference CDC/CCC
, Shanghai, China, Dec. 15–18, pp.
4030
4035
.
19.
Khadraoui
,
S.
,
Nounou
,
H.
,
Nounou
,
M.
,
Datta
,
A.
, and
Bhattacharyya
,
S.
,
2013
, “
A Measurement-Based Approach for Designing Reduced-Order Controllers With Guaranteed Bounded Error
,”
Int. J. Control
,
86
(
9
), pp.
1586
1596
.
20.
Datta
,
A.
,
Layek
,
R.
,
Nounou
,
H.
,
Nounou
,
M.
,
Mohsenizadeh
,
N.
, and
Bhattacharyya
,
S.
,
2013
, “
Towards Data Based Adaptive Control
,”
Int. J. Adapt. Control Signal Process.
,
27
(
1–2
), pp.
122
135
.
21.
Khadraoui
,
S.
,
Nounou
,
H.
,
Nounou
,
M.
,
Datta
,
A.
, and
Bhattacharyya
,
S.
,
2014
, “
A Model-Free Design of Reduced-Order Controllers and Application to a DC Servomotor
,”
Automatica
,
50
(
8
), pp.
2142
2149
.
22.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
IEEE International Conference Neural Networks
, Perth, Australia, Nov. 27–Dec. 1, pp.
942
948.
23.
Shi
,
Y.
, and
Eberhart
,
R. C.
,
1999
, “
Empirical Study of Particle Swarm Optimization
,”
IEEE
International Conference on Evolutionary Computation
, Washington, DC, July 6–9, pp.
945
950
.
24.
Horst
,
R.
, and
Tuy
,
H.
,
1996
,
Global Optimization: Deterministic Approaches
,
Springer
,
Berlin
.
25.
Schaffler
,
S.
,
2012
,
Global Optimization: A Stochastic Approach
,
Springer
,
New York
.
26.
Keel
,
L.
, and
Bhattacharyya
,
S.
,
2010
, “
A Bode Plot Characterization of All Stabilizing Controllers
,”
IEEE Trans. Autom. Control
,
55
(
11
), pp.
2650
2654
.
27.
Sala
,
A.
, and
Esparza
,
A.
,
2005
, “
Extensions to” Virtual Reference Feedback Tuning: A Direct Method for the Design of Feedback Controllers
,”
Automatica
,
41
(
8
), pp.
1473
1476
.
28.
Lanzon
,
A.
,
Lecchini
,
A.
,
Dehghani
,
A.
, and
Anderson
,
B.
,
2006
, “
Checking If Controllers Are Stabilizing Using Closed-Loop Data
,”
45th IEEE Conference on Decision and Control
, San Diego, CA, Dec. 13–15, pp.
3660
3665
.
29.
Yeddanapudi
,
M.
, and
Potvin
,
A. F.
,
1997
,
Nonlinear Control Design Blockset: User's Guide
,
The Mathworks
,
Natick, MA
.
30.
Goodwin
,
G. C.
,
Graebe
,
S. F.
, and
Salgado
,
M. E.
,
2000
,
Control System Design
,
Prentice Hall
,
Upper Saddle River, NJ
.
31.
Jaulin
,
L.
, and
Walter
,
E.
, 1993, “
Set Inversion Via Interval Analysis for Nonlinear Bounded-Error Estimation
,” Automatica,
29
(4), pp. 1053–1064.
32.
Potvin
,
A. F.
, and
Minto
,
K. D.
,
1992
, “
A General Framework for Constrained Configuration Control Law Design
,”
IFAC Proceedings Volumes
24
(8), pp. 487–492.
33.
Wood
,
R. K.
, and
Berry
,
M. W.
,
1973
, “
Terminal Composition Control of a Binary Distillation Column
,”
Chem. Eng. Sci.
,
28
(
9
), pp.
1707
1717
.
You do not currently have access to this content.