This paper presents an extremum seeking controller for photovoltaic maximum power point tracking (MPPT). The controller belongs to the broad family of “perturb and observe” algorithms, where the terminal voltage of a photovoltaic system is adjusted to maximize its output power. One critical challenge with these algorithms is that it can be difficult to distinguish between changes in photovoltaic power resulting from changes in irradiation versus the control input. With regard to this challenge, we develop an extremum seeking algorithm that uses least-squares estimation to explicitly separate the effect of the control input from the effect of time-varying disturbances. While the use of least-squares estimation in the context of extremum seeking is not new, our separation of time-varying effects is. In addition, our formulation retains much of the structure of traditional extremum seeking, thereby allowing us to perform a stability analysis comparable to the existing literature. This stability analysis assumes the time-varying disturbance to be slow, but we test the controller beyond this limit in simulation for photovoltaic MPPT. We compare our controller to two benchmarks (a similar controller that does not separate time-varying effects and a traditional extremum seeking controller), and our controller outperforms both.

References

References
1.
Villalva
,
M. G.
,
Gazoli
,
J. R.
, and
Filho
,
E. R.
,
2009
, “
Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays
,”
IEEE Trans. Power Electron.
,
24
(
5
), pp.
1198
1208
.
2.
Esram
,
T.
, and
Chapman
,
P. L.
,
2007
, “
Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques
,”
IEEE Trans. Energy Convers.
,
22
(
2
), pp.
439
449
.
3.
Salas
,
V.
,
Olías
,
E.
,
Barrado
,
A.
, and
Lázaro
,
A.
,
2006
, “
Review of the Maximum Power Point Tracking Algorithms for Stand-Alone Photovoltaic Systems
,”
Sol. Energy Mater. Sol. Cells
,
90
(
11
), pp.
1555
1578
.
4.
Docimo
,
D. J.
,
Ghanaatpishe
,
M.
, and
Mamun
,
A.
,
2017
, “
Extended Kalman Filtering to Estimate Temperature and Irradiation for Maximum Power Point Tracking of a Photovoltaic Module
,”
Energy
,
120
, pp.
47
57
.
5.
Hussein
,
K. H.
,
Muta
,
I.
,
Hoshino
,
T.
, and
Osakada
,
M.
,
1995
, “
Maximum Photovoltaic Power Tracking: An Algorithm for Rapidly Changing Atmospheric Conditions
,”
IEE Proc. Gener., Transm., Distrib.
,
142
(
1
), pp.
59
64
.
6.
Azevedo
,
G. M. S.
,
Cavalcanti
,
M. C.
,
Oliveira
,
K. C.
,
Neves
,
F. A. S.
, and
Lins
,
Z. D.
,
2009
, “
Comparative Evaluation of Maximum Power Point Tracking Methods for Photovoltaic Systems
,”
ASME J. Sol. Energy Eng.
,
131
(
3
), p.
031006
.
7.
Femia
,
N.
,
Patrone
,
G.
,
Spagnuolo
,
G.
, and
Vitelli
,
M.
,
2005
, “
Optimization of Perturb and Observe Maximum Power Point Tracking Method
,”
IEEE Trans. Power Electron.
,
20
(
4
), pp.
963
973
.
8.
Piegari
,
L.
, and
Rizzo
,
R.
,
2010
, “
Adaptive Perturb and Observe Algorithm for Photovoltaic Maximum Power Point Tracking
,”
IET Renewable Power Gener.
,
4
(
4
), pp.
317
328
.
9.
Levya
,
R.
,
Alonso
,
C.
,
Queinnec
,
I.
,
Cid-Pastor
,
A.
,
Lagrange
,
D.
, and
Martínez
,
S. L.
,
2006
, “
MPPT of Photovoltaic Systems Using Extremum-Seeking Control
,”
IEEE Trans. Aerosp. Electron. Syst.
,
42
(
1
), pp.
249
258
.
10.
Brunton
,
S. L.
,
Rowley
,
C. W.
,
Kulkarni
,
S. R.
, and
Clarkson
,
C.
,
2010
, “
Maximum Power Point Tracking for Photovoltaic Optimization Using Ripple-Based Extremum Seeking Control
,”
IEEE Trans. Power Electron.
,
25
(
10
), pp.
2531
2540
.
11.
Moura
,
S. J.
, and
Chang
,
Y. A.
,
2013
, “
Lyapunov-Based Switched Extremum Seeking for Photovoltaic Power Maximization
,”
Control Eng. Pract.
,
21
(
7
), pp.
971
980
.
12.
Ariyur
,
K.
, and
Krstić
,
M.
,
2003
,
Real-Time Optimization by Extremum Seeking Control
,
Wiley
,
Hoboken, NJ
.
13.
Tan
,
Y.
,
Moase
,
W. H.
,
Manzie
,
C.
,
Nešić
,
D.
, and
Mareels
,
I. M. Y.
,
2010
, “
Extremum Seeking From 1922 to 2010
,”
29th Chinese Control Conference
, Beijing, China, July 29–31, pp.
14
26
.https://ieeexplore.ieee.org/document/5572972/
14.
Manzie
,
C.
, and
Krstić
,
M.
,
2009
, “
Extremum Seeking With Stochastic Perturbations
,”
IEEE Trans. Autom. Control
,
54
(
3
), pp.
580
585
.
15.
Zhang
,
C.
, and
Oróñez
,
R.
,
2007
, “
Numerical Optimization-Based Extremum Seeking Control With Application to Abs Design
,”
IEEE Trans. Autom. Control
,
52
(
3
), pp.
454
467
.
16.
Zhang
,
C.
, and
Ordóñez
,
R.
,
2009
, “
Robust and Adaptive Design of Numerical Optimization-Based Extremum Seeking Control
,”
Automatica
,
45
(
3
), pp.
634
646
.
17.
Carnevale
,
D.
,
Astolfi
,
A.
,
Centioli
,
C.
,
Podda
,
S.
,
Vitale
,
V.
, and
Zaccarian
,
L.
,
2009
, “
A New Extremum Seeking Technique and Its Application to Maximize RF Heating on FTU
,”
Fusion Eng. Des.
,
84
(
2–6
), pp.
554
558
.
18.
Drakunov
,
S.
,
Özgüner
,
U.
,
Dix
,
P.
, and
Ashrafi
,
B.
,
1995
, “
ABS Control Using Optimum Search Via Sliding Modes
,”
IEEE Trans. Control Syst. Technol.
,
3
(
1
), pp.
79
85
.
19.
Yin
,
C.
,
Chen
,
Y.
, and
Zhong
,
S.
,
2014
, “
Fractional-Order Sliding Mode Based Extremum Seeking Control of a Class of Nonlinear Systems
,”
Automatica
,
50
(
12
), pp.
3173
3181
.
20.
Nešić
,
D.
,
Tan
,
Y.
,
Moase
,
W. H.
, and
Manzie
,
C.
,
2010
, “
A Unifying Approach to Extremum Seeking: Adaptive Schemes Based on Estimation of Derivatives
,” 49th
IEEE
Conference on Decision and Control
, Atlanta, GA, Dec. 15–17, pp.
4625
4630
.
21.
Mohammadi
,
A.
,
Manzie
,
C.
, and
Nešić
,
D.
,
2014
, “
Online Optimization of Spark Advance in Alternative Fueled Engines Using Extremum Seeking Control
,”
Control Eng. Pract.
,
29
, pp.
201
211
.
22.
Nešić
,
D.
,
Mohammadi
,
A.
, and
Manzie
,
C.
,
2013
, “
Framework for Extremum Seeking Control of Systems With Parameter Uncertainties
,”
IEEE Trans. Autom. Control
,
58
(
2
), pp.
435
448
.
23.
Chioua
,
M.
,
Srinivasan
,
B.
,
Guay
,
M.
, and
Perrier
,
M.
,
2016
, “
Performance Improvement of Extremum Seeking Control Using Recursive Least Square Estimation With Forgetting Factor
,”
IFAC-PapersOnLine
,
49
(
7
), pp.
424
429
.
24.
Pan
,
Y.
, and
Özgüner
,
U.
,
2002
, “
Discrete-Time Extremum Seeking Algorithms
,”
American Control Conference
, Anchorage, AK, May 8–10, pp.
3147
3152
.
25.
Guay
,
M.
, and
Dochain
,
D.
,
2015
, “
A Time-Varying Extremum-Seeking Control Approach
,”
Automatica
,
51
, pp.
356
363
.
26.
Hunnekens
,
B. G. B.
,
Haring
,
M. A. M.
,
van de Wouw
,
N.
, and
Nijmeijer
,
H.
,
2014
, “
A Dither-Free Extremum-Seeking Control Approach Using 1st-Order Least-Squares Fits for Gradient Estimation
,”
IEEE
Conference on Decision and Control
, Los Angeles, CA, Dec. 15–17, pp.
2679
2684
.
27.
Ryan
,
J. J.
, and
Speyer
,
J. L.
,
2010
, “
Peak-Seeking Control Using Gradient and Hessian Estimates
,”
American Control Conference
, Baltimore, MD, June 30–July 2, pp.
611
616
.
28.
Krstić
,
M.
, and
Wang
,
H.
,
2000
, “
Stability of Extremum Seeking Feedback for General Nonlinear Dynamic Systems
,”
Automatica
,
36
(
4
), pp.
595
601
.
29.
Jones
,
A. D.
, and
Underwood
,
C. P.
,
2001
, “
A Thermal Model for Photovoltaic Systems
,”
Sol. Energy
,
70
(
4
), pp.
349
359
.
30.
Abdelsalem
,
A. K.
,
Massoud
,
A. M.
,
Ahmed
,
S.
, and
Enjeti
,
P. N.
,
2011
, “
High-Performance Adaptive Perturb and Observe MPPT Techniques for Photovoltaic-Based Microgrids
,”
IEEE Trans. Power Electron.
,
26
(
4
), pp.
1010
1021
.
31.
Jager
,
D.
, and
Andreas
,
A.
,
1996
, “
NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)
,” National Renewable Energy Laboratory, Golden, CO, Report No. DA-5500-56489.
32.
Khalil
,
H. K.
,
1996
,
Nonlinear Systems
,
2nd ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.