In this paper, an output feedback sliding mode position controller/estimator scheme is proposed to control an single input single output (SISO) system subject to bounded nonlinearities and parametric uncertainties. Various works have been published addressing the theoretical effectiveness of the third-order sliding mode control (3-SMC) in terms of chattering alleviation and controller robustness. However, the application of 3-SMC with a feedback estimator to a flight actuators has not been treated explicitly. This is due to the fact that the accurate full state estimation is required since SMCs performance can be severely degraded by measurement or estimation noise. Aerodynamic control surface actuators in air vehicles mostly employ linear position controllers to achieve guidance and stability. The main focus of the paper is to experimentally demonstrate the stability and positioning performance of a third-order SMC applied to a class of system with high relative degree and bounded parametric uncertainties. The performance of the closed-loop system is also compared with a lower level SMC and classical controller to show the effectiveness of the algorithm. Realization of the proposed algorithm from an application perspective is the main target of this paper and it demonstrates that a shorter settling time and higher control action attenuation can be achieved with the proposed strategy.

References

References
1.
Merritt
,
H. E.
,
1967
,
Hydraulic Control Systems
, Vol.
1
,
Wiley
, New York.
2.
Bobrow
,
J. E.
, and
Lum
,
K.
,
1996
, “
Adaptive, High Bandwidth Control of a Hydraulic Actuator
,”
ASME J. Dyn. Syst., Meas., Control
,
118
(
4
), pp.
714
720
.
3.
Du, H.
, and
Zhang, N.
, 2009, “
Fuzzy Control for Nonlinear Uncertain Electrohydraulic Active Suspensions With Input Constraint
,”
IEEE Transactions on Fuzzy Systems
,
17
(2), pp. 343–356.
4.
Moir
,
I.
, and
Seabridge A.
,
2006
,
Military Avionics Systems
, Vol.
1
,
Wiley
, Hoboken, NJ.
5.
Mare
,
J.-C.
,
2006
, “
Dynamic Loading Systems for Ground Testing of High SpeedAerospace Actuators
,”
Aircr. Eng. Aerosp. Technol. An Int. J
,
78
(
4
), pp.
275
282
.
6.
White
,
F. M.
,
1991
,
Viscous Fluid Flow
, 2nd ed.,
McGraw-Hill
, New York.
7.
Li
,
D.
, and
Salcuden
,
S. E.
, April
1997
, “
Modeling Simulation and Control of a Hydraulic Stewart Platform
,”
IEEE International Conference on Robotics and Automation
, pp.
3360
3366
.
8.
Torben
,
O. A.
,
Michael
,
R. H.
,
Henrik
,
C. P.
, and
Finn
,
C.
,
2005
, “
Comparison of Linear Controllers for a Hydraulic Servo System
,”
Sixth JFPS International Symposium on Fluid Power
, Tsukuba, Japan, Nov. 7–10, pp. 167–172.http://www.jfps.jp/proceedings/tukuba2005/pdf/100224.pdf
9.
Kliffken
,
M. G.
, and
Kruse
,
U.
,
1997
, “
Robust Control of Electro Hydraulic Actuators in Primary Flight Control
,” at-Automatisierungstechnik,
45
(11), pp. 547–552.
10.
Tafazoli
,
S.
,
Silva
,
C. W.
, and
Lawrence
,
P. D.
,
1998
, “
Tracking Control of anElectrohydraulic Manipulator in the Presence of Friction
,”
IEEE Trans. Control Syst. Technol.
,
6
(
3
), pp.
401
411
.
11.
Plummer
,
A. R.
,
2007
, “
Robust Electrohydraulic Force Control
,”
Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
,
221
(
4
), pp.
717
731
.
12.
Ayalew
,
B.
,
2007
, “
Robustness to Friction Estimation for Nonlinear Position Control of an Electrohydraulic Actuator
,”
American Control Conference
(
ACC
), New York, July 9–13, pp.
100
105
.
13.
Plummer
,
A. R.
, and
Vaughan
,
N. D.
,
1996
, “
Robust Adaptive Control for Hydraulic Servosystems
,”
ASME J. Dyn. Syst., Meas., Control
,
118
(
2
), pp.
237
244
.
14.
Yao
,
J.
,
Jiao
,
Z.
, and
Ma
,
D.
,
2015
, “
A Practical Nonlinear Adaptive Control ofHydraulic Servomechanisms With Periodic-like Disturbances
,”
IEEE/ASME Trans. Mechatronics
,
20
(
6
), pp.
2752
2760
.
15.
Utkin
,
V. I.
, and
Yang
,
K. D.
,
1978
, “
Methods for Constructing Discontinuity Planes in Mutidimensional Variable Structure Systems
,”
Autom. Remote Control
,
39
(10), pp.
1466
1470
.http://mi.mathnet.ru/eng/at9875
16.
Young
,
K. D.
,
Utkin
,
V.
, and
Özgüner
,
U.
,
1996
, “
A Control Engineer's Guide to Sliding Mode Control
,”
IEEE
International Workshop on Variable Structure Systems, Tokyo, Japan, Dec. 5–6, pp. 328–342.
17.
Slotine
,
J. J.
, and
Sastry
,
S.
,
1983
, “
Tracking Control of Nonlinear System Using Sliding Surfaces With Application to Robot Manipulator
,”
Int. J. Control
,
38
(
2
), pp.
465
492
.
18.
Levant
,
A.
,
2001
, “
Universal SISO Sliding-Mode Controllers With Finite Time Convergence
,”
IEEE Trans. Autom. Control
,
46
(
9
), pp.
1447
1451
.
19.
Shtessel
,
Y.
,
Edwards
,
C.
,
Fridman
,
L.
, and
Levant
,
A.
,
2014
,
Sliding Mode Control and Observation
,
Birkhäuser
,
Basel, Switzerland
.
20.
Alfonso
,
D.
,
Gianluca
,
L. G.
,
Ignazio
,
M.
, and
Alessandro
,
P.
,
2004
, “
Second-Order Sliding-Mode Control of DC Drives
,”
IEEE Trans. Ind. Electron.
,
51
(
2
), pp. 364–373.
21.
Cucuzzella
,
M.
,
Incremona
,
G. P.
, and
Ferrara
,
A.
,
2015
, “
Third-Order Sliding Mode Control in Microgrids
,”
European Control Conference
(
ECC
), Linz, Austria, July 15–17, pp. 2384–2389.
22.
Schmidt
,
L.
,
Andersen
,
T. O.
, and
Pedersen
,
H. C.
,
2014
, “
On Application of Second Order Sliding Mode Control to Electro-Hydraulic Systems
,”
ASME
Paper No. ESDA2014-20470.
23.
Stout
,
W.
,
2013
,
Aerospace Hydraulic Systems
,
Design Aerospace LCC Press
.
24.
Jelali
,
M.
, and
Kroll
,
A.
,
2003
,
Hydraulic Servo-Systems: Modelling, Identification and Control
,
Springer-Verlag
,
London
.
25.
Defoort
,
M.
,
Nollet
,
F.
,
Floquet
,
T.
, and
Perruquetti
,
W.
,
2009
, “
A Third-Order Sliding Mode Controller for a Stepper Motor
,”
IEEE Trans. Ind. Electron.
,
56
(
9
), pp.
3337
3346
.
26.
Schmidt
,
L.
,
2015
, “
Robust Control of Industrial Hydraulic Cylinder Drives- With Special Reference to Sliding Mode & Finite-Time Control
,”
Ph.D. thesis
, Alborg University, Aalborg, Denmark.http://vbn.aau.dk/files/201384565/lasse_schmidt.pdf
27.
Jean-Jacques, E. S.
,
1984
, “
Sliding Controller Design for Non-Linear Systems
,”
Int. J. Control
,
40
(
2
), pp.
421
434
.
28.
Levant
,
A.
,
1998
, “
Robust Exact Differentiation Via Sliding Mode Technique
,”
Automatica
,
34
(
3
), pp.
379
384
.
29.
Wang
,
L.
,
Basin
,
M.
,
Li
,
H.
, and
Lu
,
R.
,
2017
, “
Observer-Based Composite Adaptive Fuzzy Control for Nonstrict-Feedback Systems With Actuator Failures
,”
IEEE Trans. Fuzzy Syst.
,
26
(4), pp. 2336–2347.
30.
Utkin
,
V. I.
, Feb.
1993
, “
Sliding Mode Control Design Principles and Applications to Electric Drives
,”
IEEE Trans. Ind. Electron.
,
40
(
1
), pp.
23
36
.
31.
Filippov
,
F.
, and
Arscott, F. M.
,
1988
,
Differential equations With Discontinuities Right-Hand Sides
,
Kluwer Academic Publisher
, Dordrecht, The Netherlands.
32.
Atassi
,
A.
, and
Khalil
,
H.
,
2000
, “
Separation Results for the Stabilization of Nonlinear Systems Using Different High-Gain Observer Designs
,”
Syst. Control Lett.
,
39
(
3
), pp.
183
191
.
33.
Kobayashi
,
S.
, and
Furuta
,
K.
,
2007
, “
Frequency Characteristics of Levant's Differentiator and Adaptive Sliding Mode Differentiator
,”
Int. J. Syst. Sci.
,
38
(
10
), pp.
825
832
.
34.
Bartolini
,
G.
,
Levant
,
A.
,
Pisano
,
A.
, and
Usai
,
E.
,
2000
, “
On the Robust Stabilization of Nonlinear Uncertain Systems With Incomplete State Availability
,”
ASME, J. Dyn. Syst. Meas. Control
,
122
(
4
), pp.
738
745
.
You do not currently have access to this content.