In this work, we suggest a novel solution to a very specific problem—calculating the pose (position and attitude) of a micro-aerial vehicle (MAV) operating inside corridors and in front of windows. The proposed method makes use of a single image captured by a front facing camera, of specific features whose three-dimensional (3D) model is partially known. No prior knowledge regarding the size of the corridor or the window is needed, nor is the ratio between their width and height. The position is calculated up to an unknown scale using a gain scheduled iterative algorithm. In order to compensate for the unknown scale, an adaptive controller that ensures consistent closed loop behavior is suggested. The attitude calculation can be used as is, or the results can be fused with angular velocity sensors to achieve better estimation. In this paper, the algorithm is presented and the approach is demonstrated with simulations and experiments.

References

References
1.
Coza
,
C.
, and
Macnab
,
C. J. B.
,
2006
, “
A New Robust Adaptive-Fuzzy Control Method Applied to Quadrotor Helicopter Stabilization
,”
Annual Meeting of the North American Fuzzy Information Processing Society,
Montreal, QC, Canada, June 3–6, Paper No.
NAFIPS 2006-2006
, pp.
454
458
.
2.
Mahony
,
R.
,
Cha
,
S.-H.
,
Hamel
,
T.
, and
Antipolis
,
F.
,
2006
, “
A Coupled Estimation and Control Analysis for Attitude Stabilisation of Mini Aerial Vehicles
,”
Australasian Conference on Robotics and Automation
, Auckland, New Zealand, Dec. 6–8, pp.
1
10
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.368.9509&rep=rep1&type=pdf
3.
Mellinger
,
D.
,
Michael
,
N.
, and
Kumar
,
V.
,
2012
, “
Trajectory Generation and Control for Precise Aggressive Maneuvers With Quadrotors
,”
Int. J. Rob. Res.
,
31
(
5
), pp.
664
674
.
4.
Pounds
,
P.
,
Mahony
,
R.
, and
Corke
,
P.
,
2010
, “
Modelling and Control of a Large Quadrotor Robot
,”
Control Eng. Pract.
,
18
(
7
), pp.
691
699
.
5.
Moore
,
R. J. D.
,
Dantu
,
K.
,
Barrows
,
G. L.
, and
Nagpal
,
R.
,
2014
, “
Autonomous MAV Guidance With a Lightweight Omnidirectional Vision Sensor
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May 31–June 7, pp.
3856
3861
.
6.
Engel
,
J.
,
Sturm
,
J.
, and
Cremers
,
D.
,
2014
, “
Scale-Aware Navigation of a Low-Cost Quadrocopter With a Monocular Camera
,”
Rob. Auton. Syst.
,
62
(
11
), pp.
1646
1656
.
7.
García Carrillo
,
L. R.
,
Rondon
,
E.
,
Sanchez
,
A.
,
Dzul
,
A.
, and
Lozano
,
R.
,
2011
, “
Stabilization and Trajectory Tracking of a Quad-Rotor Using Vision
,”
J. Intell. Rob. Syst.
,
61
(
1–4
), pp.
103
118
.
8.
Falanga
,
D.
,
Mueggler
,
E.
,
Faessler
,
M.
, and
Scaramuzza
,
D.
,
2017
, “
Aggressive Quadrotor Flight Through Narrow Gaps With Onboard Sensing and Computing Using Active Vision
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Singapore, May 29–June 3, pp.
5774
5781
.
9.
Chu
,
T.
,
Guo
,
N.
,
Backén
,
S.
, and
Akos
,
D.
,
2012
, “
Monocular Camera/Imu/Gnss Integration for Ground Vehicle Navigation in Challenging GNSS Environments
,”
Sensors
,
12
(
3
), pp.
3162
3185
.
10.
Zsedrovits
,
T.
,
Bauer
,
P.
,
Zarandy
,
A.
,
Vanek
,
B.
,
Bokor
,
J.
, and
Roska
,
T.
,
2014
, “
Error Analysis of Algorithms for Camera Rotation Calculation in GPS/IMU/Camera Fusion for UAV Sense and Avoid Systems
,”
International Conference on Unmanned Aircraft Systems
(
ICUAS
), Orlando, FL, May 27–30, pp.
864
875
.
11.
Saripalli
,
S.
,
Montgomery
,
J. F.
, and
Sukhatme
,
G. S.
,
2002
, “
Vision-Based Autonomous Landing of an Unmanned Aerial Vehicle
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Washington, DC, May 11–15, pp.
2799
2804
.
12.
Lin
,
F.
,
Peng
,
K.
,
Dong
,
X.
,
Zhao
,
S.
, and
Chen
,
B. M.
,
2014
, “
Vision-Based Formation for UAVS
,”
11th IEEE International Conference on Control Automation
(
ICCA
), Taichung, Taiwan, June 18–20, pp.
1375
1380
.
13.
Malis
,
E.
, and
Chaumette
,
F.
,
2000
, “
2 1/2 D Visual Servoing With Respect to Unknown Objects Through a New Estimation Scheme of Camera Displacement
,”
Int. J. Comput. Vision
,
37
(1), 79–97.
14.
Espiau
,
B.
,
Chaumette
,
F.
, and
Rives
,
P.
,
1992
, “
A New Approach to Visual Servoing in Robotics
,”
IEEE Trans. Rob. Autom.
,
8
(
3
), pp.
313
326
.
15.
Papanikolopoulos
,
N. P.
, and
Khosla
,
P. K.
,
1993
, “
Adaptive Robotic Visual Tracking: Theory and Experiments
,”
IEEE Trans. Autom. Control
,
38
(
3
), pp.
429
445
.
16.
Lee
,
D.
,
Nataraj
,
C.
,
Burg
,
T. C.
, and
Dawson
,
D. M.
,
2011
, “
Adaptive Tracking Control of an Underactuated Aerial Vehicle
,”
American Control Conference
(
ACC
), San Francisco, CA, June 29–July 1, pp.
2326
2331
.
17.
Hua
,
M. D.
,
Hamel
,
T.
,
Morin
,
P.
, and
Samson
,
C.
,
2013
, “
Introduction to Feedback Control of Underactuated VTOL Vehicles: A Review of Basic Control Design Ideas and Principles
,”
IEEE Control Syst.
,
33
(
1
), pp.
61
75
.
18.
Bills
,
C.
,
Chen
,
J.
, and
Saxena
,
A.
,
2011
, “
Autonomous MAV Flight in Indoor Environments Using Single Image Perspective Cues
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
5776
5783
.
19.
Araar
,
O.
, and
Aouf
,
N.
,
2014
, “
Visual Servoing of a Quadrotor UAV for Autonomous Power Lines Inspection
,”
22nd Mediterranean Conference on Control and Automation
, Palermo, Italy, June 16–19, pp.
1418
1424
.
20.
Efraim
,
H.
,
Arogeti
,
S.
,
Shapiro
,
A.
, and
Weiss
,
G.
,
2017
, “
Vision Based Output Feedback Control of Micro Aerial Vehicles in Indoor Environments
,”
J. Intell. Rob. Syst.
,
87
(
1
), pp.
169
186
.
21.
Leishman
,
R. C.
,
Macdonald
,
J. C.
,
Beard
,
R. W.
, and
McLain
,
T. W.
,
2014
, “
Quadrotors and Accelerometers: State Estimation With an Improved Dynamic Model
,”
IEEE Control Syst.
,
34
(
1
), pp.
28
41
.
22.
Chen
,
H. H.
,
1990
, “
Pose Determination From Line-to-Plane Correspondences: Existence Condition and Closed-Form Solutions
,”
Third International Conference on Computer Vision
(
ICCV
), Osaka, Japan, Dec. 4–7, pp.
374
378
.
23.
Mirzaei
,
F. M.
, and
Roumeliotis
,
S. I.
,
2011
, “
Globally Optimal Pose Estimation From Line Correspondences
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
5581
5588
.
24.
Dornaika
,
F.
, and
Garcia
,
C.
,
1999
, “
Pose Estimation Using Point and Line Correspondences
,”
Real-Time Imaging
,
5
(
3
), pp.
215
230
.
25.
David
,
P.
,
DeMenthon
,
D.
,
Duraiswami
,
R.
, and
Samet
,
H.
,
2003
, “
Simultaneous Pose and Correspondence Determination Using Line Features
,”
IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
Madison, WI, June 18–20, p. II.
26.
Zhang
,
X.
,
Zhang
,
Z.
,
Li
,
Y.
,
Zhu
,
X.
,
Yu
,
Q.
, and
Ou
,
J.
,
2012
, “
Robust Camera Pose Estimation From Unknown or Known Line Correspondences
,”
Appl. Opt
,
51
(
7
), pp.
936
948
.
27.
Moreno-Noguer
,
F.
,
Lepetit
,
V.
, and
Fua
,
P.
,
2008
, “
Pose Priors for Simultaneously Solving Alignment and Correspondence
,”
Computer Vision–ECCV 2008
,
D.
Forsyth
,
P.
Torr
, and
A.
Zisserman
, eds.,
Springer, Berlin
, pp.
405
418
.
28.
Elqursh
,
A.
, and
Elgammal
,
A.
,
2011
, “
Line-Based Relative Pose Estimation
,” Computer Vision and Pattern Recognition (
CVPR 2011
), Colorado Springs, CO, June 20–25, pp.
3049
3056
.
29.
Criminisi
,
A.
,
Reid
,
I.
, and
Zisserman
,
A.
,
2000
, “
Single View Metrology
,”
Int. J. Comput. Vision
,
40
(
2
), pp.
123
148
.
30.
Shi
,
W.
, and
Samarabandu
,
J.
,
2006
, “
Corridor Line Detection for Vision Based Indoor Robot Navigation
,”
Canadian Conference on Electrical and Computer Engineering
, Ottawa, ON, Canada, May 7–10, pp.
1988
1991
.
31.
Bristeau
,
P.-J.
,
Callou
,
F.
,
Vissière
,
D.
, and
Petit
,
N.
,
2011
, “
The Navigation and Control Technology Inside the Ar.Drone Micro UAV
,”
IFAC Proc. Volumes
,
44
(
1
), pp.
1477
1484
.
You do not currently have access to this content.