Three algorithms that improve the performance of the asymptotically optimal Rapidly exploring Random Tree (RRT*) are presented in this paper. First, we introduce the Goal Tree (GT) algorithm for motion planning in dynamic environments where unexpected obstacles appear sporadically. The GT reuses the previous RRT* by pruning the affected area and then extending the tree by drawing samples from a shadow set. The shadow is the subset of the free configuration space containing all configurations that have geodesics ending at the goal and are in conflict with the new obstacle. Smaller, well defined, sampling regions are considered for Euclidean metric spaces and Dubins' vehicles. Next, the Focused-Refinement (FR) algorithm, which samples with some probability around the first path found by an RRT*, is defined. The third improvement is the Grandparent-Connection (GP) algorithm, which attempts to connect an added vertex directly to its grandparent vertex instead of parent. The GT and GP algorithms are both proven to be asymptotically optimal. Finally, the three algorithms are simulated and compared for a Euclidean metric robot, a Dubins' vehicle, and a seven degrees-of-freedom manipulator.

References

References
1.
LaValle
,
S. M.
,
2006
,
Planning Algorithms
,
Cambridge, UK
.
2.
Kavraki
,
L. E.
,
Svestka
,
P.
,
Latombe
,
J.-C.
, and
Overmars
,
M. H.
,
1996
, “
Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces
,”
IEEE Trans. Rob. Autom.
,
12
(
4
), pp.
566
580
.
3.
Waringo
,
M.
, and
Henrich
,
D.
,
2006
, “
Efficient Smoothing of Piecewise Linear Paths With Minimal Deviation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
3867
3872
.
4.
Carpin
,
S.
, and
Pillonetto
,
G.
,
2005
, “
Motion Planning Using Adaptive Random Walks
,”
IEEE Trans. Rob.
,
21
(
1
), pp.
129
136
.
5.
Sánchez
,
G.
, and
Latombe
,
J.-C.
,
2003
, “
A Single-Query Bi-Directional Probabilistic Roadmap Planner With Lazy Collision Checking
,”
International Symposium on Robotic Research
, pp.
403
417
.
6.
Karaman
,
S.
, and
Frazzoli
,
E.
,
2011
, “
Sampling-Based Algorithms for Optimal Motion Planning
,”
Int. J. Rob. Res.
,
30
(
7
), pp.
846
894
.
7.
Karaman
,
S.
,
Walter
,
M. R.
,
Perez
,
A.
,
Frazzoli
,
E.
, and
Teller
,
S.
,
2011
, “
Anytime Motion Planning Using the RRT*
,”
IEEE International Conference on Robotics and Automation
, pp.
1478
1483
.
8.
Perez
,
A.
,
Karaman
,
S.
,
Shkolnik
,
A.
,
Frazzoli
,
E.
,
Teller
,
S.
, and
Walter
,
M. R.
,
2011
, “
Asymptotically-Optimal Path Planning for Manipulation Using Incremental Sampling-Based Algorithms
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
4307
4313
.
9.
Shkolnik
,
A.
, and
Tedrake
,
R.
,
2011
, “
Sample-Based Planning With Volumes in Configuration Space
,”
eprint
, arXiv:1109.3145.
10.
Arslan
,
O.
, and
Tsiotras
,
P.
,
2013
, “
Use of Relaxation Methods in Sampling-Based Algorithms for Optimal Motion Planning
,”
In IEEE International Conference on Robotics and Automation
, Karlsruhe, Germany, May 6–10, pp.
2421
2428
.
11.
Janson
,
L.
, and
Pavone
,
M.
,
2015
, “
Fast Marching Tree: A Fast Marching Sampling-Based Method for Optimal Motion Planning in Many Dimensions
,”
International Symposium on Robotic Research
, Sestri Levante, italy, Sept 12–15, pp.
883
921
.
12.
Akgun
,
B.
, and
Stilman
,
M.
,
2011
, “
Sampling Heuristics for Optimal Motion Planning in High Dimensions
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, San Francisco, CA, Sept. 25–30, pp.
2640
2645
.
13.
Islam
,
F.
,
Nasir
,
J.
,
Malik
,
U.
,
Ayaz
,
Y.
, and
Hasan
,
O.
,
2012
, “
RRT - Smart: Rapid Convergence Implementation of RRT Towards Optimal Solution
,”
IEEE International Conference on Mechatronics and Automation
, Chengdu, China, Aug. 5–8, pp.
1651
1656
.
14.
Koenig
,
S.
, and
Likhachev
,
M.
,
2002
, “
D⋆ Lite
,” Association for the Advancement of Artificial Intelligence, Menlo Park, CA, Vol.
15
, pp. 476--483.
15.
Stentz
,
A.
,
1995
, “
The Focussed D* Algorithm for Real-Time Replanning
,”
14th International Joint Conference on Artificial Intelligence
, Montreal, QC, Canada, Aug. 20–25, pp.
1652
1659
.http://www.frc.ri.cmu.edu/~axs/doc/ijcai95.pdf
16.
Ferguson
,
D.
,
Kalra
,
N.
, and
Stentz
,
A.
,
2006
, “
Replanning With RRTs
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Orlando, FL, May 15–19, pp.
1243
1248
.
17.
Zucker
,
M.
,
Kuffner
,
J.
, and
Branicky
,
M.
,
2007
, “
Multipartite RRTs for Rapid Replanning in Dynamic Environments
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Roma, Italy, Apr. 10–14, pp.
1603
1609
.
18.
Bruce
,
J.
, and
Veloso
,
M.
,
2002
, “
Real-Time Randomized Path Planning for Robot Navigation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Lausanne, Switzerland, Sept. 30–Oct. 4, pp.
2383
2388
.
19.
Li
,
T.-Y.
, and
Shie
,
Y.-C.
,
2002
, “
An Incremental Learning Approach to Motion Planning With Roadmap Management
,”
In IEEE International Conference on Robotics and Automation
(
ICRA
), Washington, DC, May 11--15, Vol.
4
, pp.
3411
3416
.
20.
Gayle
,
R.
,
Klingler
,
K. R.
, and
Xavier
,
P. G.
,
2007
, “
Lazy Reconfiguration Forest (LRF)—An Approach for Motion Planning With Multiple Tasks in Dynamic Environments
,”
IEEE International Conference on Robotics and Automation
, pp.
1316
1323
.
21.
Kuffner
,
J. J.
,
LaValle
,
S. M.
,
2000
, “
RRT-Connect: An Efficient Approach to Single-Query Path Planning
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), San Francisco, CA, Apr. 24–28, pp.
995
1001
.
22.
Otte
,
M.
, and
Frazzoli
,
S.
,
2015
, “
RRTx: Asymptotically Optimal Single-Query Sampling-Based Motion Planning With Quick Replanning
,”
Int. J. Rob. Res.
, 35(
7
), pp.
797
822
.
23.
Boardman
,
B.
,
Harden
,
T.
, and
Martínez
,
S.
,
2014
, “
Optimal Kinodynamic Motion Planning in Environments With Unexpected Obstacles
,”
52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton)
, Monticello, IL, Sept. 30–Oct 3, pp.
1026
1032
.
24.
Boardman
,
B.
,
Harden
,
T.
, and
Martínez
,
S.
,
2015
, “
Focused Refinement in the RRT*: Trading Optimality for Improved Performance
,”
ASME
Paper No. DETC2015-46535
.
25.
Karaman
,
S.
, and
Frazzoli
,
E.
,
2010
, “
Optimal Kinodynamic Motion Planning Using Incremental Sampling-Based Methods
,”
IEEE International Conference on Decision and Control
(
CDC
), Atlanta, GA, Dec. 15–17, pp.
7681
7687
.
26.
Bruce
,
J. W.
, and
Giblin
,
P. J.
,
1984
, “
An Elementary Approach to Generic Properties of Plane Curves
,”
Proc. Am. Math. Soc.
,
90
(
3
), pp.
455
458
.
27.
Dubins
,
L. E.
,
1957
, “
On Curves of Minimal Length With a Constraint on Average Curvature, and With Prescribed Initial and Terminal Positions and Tangents
,”
Am. J. Math.
,
73
(
3
), pp.
497
516
.
You do not currently have access to this content.