Proper design of feedback controllers is crucial for ensuring high performance of active magnetic bearing (AMB) supported rotor dynamic systems. Annular seals in those systems can contribute significant forces, which, in many cases, are hard to model in advance due to complex geometries of the seal and multiphase fluids. Hence, it can be challenging to design AMB controllers that will guarantee robust performance for these kinds of systems. This paper demonstrates the design, simulation, and experimental results of model-based controllers for AMB systems, subjected to dynamic seal forces. The controllers are found using H and μ synthesis and are based on a global rotor dynamic model in which the seal coefficients are identified in situ. The controllers are implemented in a rotor-dynamic test facility with two radial AMBs and one annular seal with an adjustable inlet pressure. The seal is a smooth annular type, with large clearance (worn seal) and with high preswirl, which generates significant cross-coupled forces. The H controller is designed to compensate for the seal forces and the μ controller is furthermore designed to be robust against a range of pressures across the seal. In this study, the rotor is nonrotating. Experimental and simulation results show that significant performance can be achieved using the model-based controllers compared to a reference decentralized proportional-integral-derivative (PID) controller and robustness against large variations of pressure across the seal can be improved by the use of robust synthesized controllers.

References

1.
Fritz
,
R.
,
1970
, “
The Effects of an Annular Fluid on the Vibrations of a Long Rotor—Part 1: Theory
,”
ASME J. Basic Eng.
,
92
(
4
), pp.
923
929
.
2.
Black
,
H.
,
1969
, “
Effects of Hydraulic Forces in Annular Pressure Seals on the Vibrations of Centrifugal Pump Rotors
,”
J. Mech. Eng. Sci.
,
11
(
2
), pp.
206
213
.
3.
Black
,
H.
, and
Jenssen
,
D.
,
1970
, “
Dynamic Hybrid Properties of Annular Pressure Seals
,”
ASME J. Fluids Eng.
,
184
, pp.
92
100
.
4.
Childs
,
D. W.
, and
Dressman
,
J. B.
,
1982
, “
Testing of Turbulent Seals for Rotordynamic Coefficients
,”
Workshop on Rotordynamic Instability Problems in High-Performance Turbomachinery
, College Station, TX, May 10–12, pp.
157
171
.
5.
Nordmann
,
R.
, and
Massmann
,
H.
,
1984
, “
Identification of Dynamic Coefficients of Annular Turbulent Seals
,”
Workshop on Rotordynamic Instability Problems in High-Performance Turbomachinery
, College Station, TX, May 28–30, pp.
295
311
.
6.
Baskharone
,
E.
, and
Hensel
,
S.
,
1993
, “
Flow Field in the Secondary, Seal-Containing Passages of Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
115
(
4
), pp.
702
702
.
7.
Schettel
,
J.
, and
Nordmann
,
R.
,
2004
, “
Rotordynamics of Turbine Labyrinth Seals—A Comparison of CFD Models to Experiments
,”
IMECHE Conf. Trans.
,
2004
(
2
), pp.
13
22
.
8.
Ishii
,
E.
,
Chisachi
,
K.
,
Kikuchi
,
K.
, and
Ueyama
,
Y.
,
1997
, “
Prediction of Rotordynamic Forces in a Labyrinth Seal Based on Three-Dimensional Turbulent Flow Computation
,”
Mach. Elem. Manuf.
,
40
(
4
), pp.
743
748
.
9.
Rhode
,
D. L.
,
Hensel
,
S. J.
, and
Guidry
,
M. J.
,
1992
, “
Labyrinth Seal Rotordynamic Forces Using a Three-Dimensional Navier-Stokes Code
,”
ASME J. Tribol.
,
114
(
4
), p.
683
10.
Hirs
,
G.
,
1973
, “
A Bulk-Flow Theory for Turbulence in Lubricant Films
,”
ASME J. Lubr. Technol.
,
95
(
2
), pp.
137
146
.
11.
Childs
,
D.
,
1989
, “
Fluid-Structure Interaction Forces at Pump-Impeller-Shroud Surfaces for Rotordynamic Calculations
,”
ASME J. Vib. Acoust., Stress and Reliab.
,
111
(
3
), pp.
216
225
.
12.
Nielsen
,
K. K.
,
Jønck
,
K.
, and
Underbakke
,
H.
,
2012
, “
Hole-Pattern and Honeycomb Seal Rotordynamic Forces: Validation of CFD-Based Prediction Techniques
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
122505
.
13.
Marquette
,
O.
,
Childs
,
D.
, and
SanAndres
,
L.
,
1997
, “
Eccentricity Effects on the Rotordynamic Coefficients of Plain Annular Seals: Theory Versus Experiment
,”
ASME J. Tribol.
,
119
(
3
), pp.
443
447
.
14.
Hsu
,
Y.
, and
Brennen
,
C.
,
2002
, “
Fluid Flow Equations for Rotordynamic Flows in Seals and Leakage Paths
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
176
181
.
15.
Kirk
,
R.
, and
Guo
,
Z.
,
2004
, “
Calibration of Labyrinth Seal Bulk Flow Design Analysis Predictions to CFD Simulation Results
,”
Eighth International Conference on Vibrations in Rotating Machinery
, Swansea, UK, Sept. 7–9, pp.
3
12
.
16.
Kocur
,
J. A.
,
Nicholas
,
J. C.
, and
Lee
,
C. C.
,
2007
, “
Surveying Tilting Pad Journal Bearing and Gas-Labyrinth Seal Coefficients and Their Effect on Rotor Stability
,”
36th Turbomachinery Symposium
, Houston, TX, Sept. 10–13, pp.
10
13
.
17.
San Andrés
,
L.
,
2012
, “
Rotordynamic Force Coefficients of Bubbly Mixture Annular Pressure Seals
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
022503
.
18.
Cole
,
M. O.
,
Keogh
,
P. S.
,
Sahinkaya
,
M. N.
, and
Burrows
,
C. R.
,
2004
, “
Towards Fault-Tolerant Active Control of Rotor–Magnetic Bearing Systems
,”
Control Eng. Pract.
,
12
(
4
), pp.
491
501
.
19.
Balas
,
G. J.
, and
Young
,
P. M.
,
1995
, “
Control Design for Variations in Structural Natural Frequencies
,”
J. Guid. Control, Dyn.
,
18
(
2
), pp.
325
332
.
20.
Schonhoff
,
U.
,
Luo
,
J.
,
Li
,
G.
,
Hilton
,
E.
,
Nordmann
,
R.
, and
Allaire
,
P.
,
2000
, “
Implementation Results of Mu-Synthesis Control for an Energy Storage Flywheel Test Rig
,”
Eighth International Symposium on Magnetic Bearings
(
ISMB-8
), Mito, Japan, Aug. 26–28, pp. 317–322.
21.
Zhou
,
K.
,
Doyle
,
J. C.
, and
Glover
,
K.
,
1996
,
Robust and Optimal Control
, Vol.
40
,
Prentice Hall
,
Upper Saddle River, NJ
.
22.
ISO
,
2004
, “
Mechanical Vibration-Vibration of Rotating Machinery Equipped With Active Magnetic Bearings—Part 3: Evaluation of Stability Margin
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO 14839-3: 2006
.
23.
Cole
,
M.
,
Chamroon
,
C.
, and
Keogh
,
P.
,
2016
, “
H-Infinity Controller Design for Active Magnetic Bearings Considering Nonlinear Vibrational Rotordynamics
,” International Symposium on Magnetic Bearings (
ISMB-15
), Kitakyushu, Japan, Aug. 3–6.
24.
Balini
,
H.
,
Witte
,
J.
, and
Scherer
,
C. W.
,
2012
, “
Synthesis and Implementation of Gain-Scheduling and LPV Controllers for an AMB System
,”
Automatica
,
48
(
3
), pp.
521
527
.
25.
Mushi
,
S. E.
,
Lin
,
Z.
,
Allaire
,
P. E.
, and
Evans
,
S.
,
2008
, “
Aerodynamic Cross-Coupling in a Flexible Rotor: Control Design and Implementation
,” International Symposium on Magnetic Bearings (
ISMB-11
), Nara, Japan, Aug. 26–29, pp. 12–17.
26.
Wurmsdobler
,
P.
,
1997
, “
State Space Adaptive Control for a Rigid Rotor Suspended in Active Magnetic Bearings
,”
Ph.D. thesis
, TU Wien, Vienna, Austria.
27.
Lang
,
O.
,
Wassermann
,
J.
, and
Springer
,
H.
,
1996
, “
Adaptive Vibration Control of a Rigid Rotor Supported by Active Magnetic Bearings
,”
ASME J. Eng. Gas Turbines Power
,
118
(
4
), pp.
825
829
.
28.
Hirschmanner
,
M.
, and
Springer
,
H.
,
2002
, “
Adaptive Vibration and Unbalance Control of a Rotor Supported by Active Magnetic Bearings
,” Eighth International Symposium on Magnetic Bearings (ISMB-8), Mito, Japan, Aug. 26–28.
29.
Lauridsen
,
J.
, and
Santos
,
I.
,
2017
, “
Design of Robust AMB Controllers for Rotors Subjected to Varying and Uncertain Seal Forces
,”
Mech. Eng. J.
,
4
(
5
), p.
16
.
30.
Lauridsen
,
J. S.
, and
Santos
,
I. F.
,
2018
, “
On-Site Identification of Dynamic Annular Seal Forces in Turbo Machinery Using Active Magnetic Bearings—An Experimental Investigation
,”
ASME J. Eng. Gas Turbines Power
, accepted.
31.
Voigt
,
A. J.
,
Mandrup-Poulsen
,
C.
,
Nielsen
,
K. K.
, and
Santos
,
I. F.
,
2017
, “
Design and Calibration of a Full Scale Active Magnetic Bearing Based Test Facility for Investigating Rotordynamic Properties of Turbomachinery Seals in Multiphase Flow
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052505
.
32.
Voigt
,
A. J.
,
2016
, “
Towards Identification of Rotordynamic Properties for Seals in Multiphase Flow Using Active Magnetic Bearings. design and Commissioning of a Novel Test Facility
,”
Ph.D. thesis
, Technical University of Denmark, Kongens Lyngby, Denmark.
33.
Bleuler
,
H.
,
Cole
,
M.
,
Keogh
,
P.
,
Larsonneur
,
R.
,
Maslen
,
E.
,
Okada
,
Y.
,
Schweitzer
,
G.
, and
Traxler
,
A.
,
2009
,
Magnetic Bearings: Theory, Design, and Application to Rotating Machinery
,
Springer-Verlag
,
Berlin
.
34.
Childs
,
D. W.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
Wiley
,
New York
.
35.
Nelson
,
H.
,
1980
, “
A Finite Rotating Shaft Element Using Timoshenko Beam Theory
,”
ASME J. Mech. Des.
,
102
(
4
), pp.
793
803
.
36.
Skogestad
,
S.
, and
Postlethwaite
,
I.
,
2007
,
Multivariable Feedback Control: Analysis and Design
, Vol.
2
,
Wiley
,
New York
.
37.
Voigt
,
A. J.
,
Lauridsen
,
J. S.
,
Poulsen
,
C. M.
,
Nielsen
,
K. K.
, and
Santos
,
I. F.
,
2016
, “
Identification of Parameters in Active Magnetic Bearing Systems
,” International Symposium on Magnetic Bearings (ISMB-15), Kitakyushu, Japan, Aug. 3–6.
You do not currently have access to this content.