In this paper, the problem of state constraints control is investigated for a class of output constrained flexible manipulator system with varying payload. The dynamic behavior of the flexible manipulator is represented by partial differential equations. To prevent states of the flexible manipulator system from violating the constraints, a barrier Lyapunov function which grows to infinity whenever its arguments approach to some limits is employed. Then, based on the barrier Lyapunov function, boundary control laws are given. To solve the problem of varying payload, an adaptive boundary controller is developed. Furthermore, based on the theory of barrier Lyapunov function and the adaptive algorithm, state constraints and output control under vibration condition can be achieved. The stability of the closed-loop system is carried out by the Lyapunov stability theory. Numerical simulations are given to illustrate the performance of the closed-loop system.

References

References
1.
Korayem
,
M. H.
, and
Ghariblu
,
H.
,
2004
, “
Analysis of Wheeled Mobile Flexible Manipulator Dynamic Motions With Maximum Load Carrying Capacities
,”
Rob. Auton. Syst.
,
48
(
2–3
), pp.
63
76
.
2.
Korayem
,
M. H.
,
Irani
,
M.
, and
Nekoo
,
S. R.
,
2011
, “
Load Maximization of Flexible Joint Mechanical Manipulator Using Nonlinear Optimal Controller
,”
Acta Astronaut.
,
69
(
7–8
), pp.
458
469
.
3.
Hashemi
,
S. M.
,
Abbas
,
H. S.
, and
Werner
,
H.
,
2012
, “
Low-Complexity Linear Parameter-Varying Modeling and Control of a Robotic Manipulator
,”
Control Eng. Pract.
,
20
(
3
), pp.
248
257
.
4.
Wai
,
R. J.
,
Huang
,
Y. C.
,
Yang
,
Z. W.
, and
Shih
,
C. Y.
,
2010
, “
Adaptive Fuzzy-Neural-Network Velocity Sensorless Control for Robot Manipulator Position Tracking
,”
IET Control Theory Appl.
,
4
(6), pp.
1079
1093
.
5.
Chen
,
C. S.
,
2011
, “
Supervisory Adaptive Tracking Control of Robot Manipulators Using Interval Type-2 TSK Fuzzy Logic System
,”
IET Control Theory Appl.
,
5
(15), pp.
1796
1807
.
6.
Huang
,
J. S.
,
Wen
,
C. Y.
,
Wang
,
W.
, and
Jiang
,
Z. P.
,
2014
, “
Adaptive Output Feedback Tracking Control of a Nonholonomic Mobile Robot
,”
Automatica
,
50
(
3
), pp.
821
831
.
7.
Korayem
,
M. H.
,
Rahimi
,
H. N.
, and
Nikoobin
,
A.
,
2012
, “
Mathematical Modeling and Trajectory Planning of Mobile Manipulators With Flexible Links and Joints
,”
Appl. Math. Modell.
,
36
(
7
), pp.
3229
3244
.
8.
Hu
,
Q.
, and
Zhang
,
J.
,
2015
, “
Maneuver and Vibration Control of Flexible Manipulators Using Variable-Speed Control Moment Gyros
,”
Acta Astronaut.
,
113
, pp.
105
119
.
9.
Shawky
,
A.
,
Zydek
,
D.
,
Elhalwagy
,
Y. Z.
, and
Ordys
,
A.
,
2013
, “
Modeling and Nonlinear Control of a Flexible-Link Manipulator
,”
Appl. Math. Modell.
,
37
(
23
), pp.
9591
9602
.
10.
Dubay
,
R.
,
Hassan
,
M.
,
Li
,
C.
, and
Charest
,
M.
,
2014
, “
Finite Element Based Model Predictive Control for Active Vibration Suppression of a One-Link Flexible Manipulator
,”
ISA Trans.
,
53
(
5
), pp.
1609
1619
.
11.
Feng
,
Y.
,
Bao
,
S.
, and
Yu
,
X.
,
2004
, “
Inverse Dynamics Nonsingular Terminal Sliding Mode Control of Two-Link Flexible Manipulators
,”
Int. J. Rob. Autom.
,
19
(
2
), pp.
91
102
.
12.
Zhang
,
X.
,
Xu
,
W.
,
Nair
,
S. S.
, and
Chellaboina
,
V.
,
2005
, “
PDE Modeling and Control of a Flexible Two-Link Manipulator
,”
IEEE Trans. Control Syst. Technol.
,
13
(2), pp.
301
312
.
13.
Zhang
,
L.
, and
Liu
,
J.
,
2012
, “
Observer-Based Partial Differential Equation Boundary Control for a Flexible Two-Link Manipulator in Task Space
,”
IET Control Theory Appl.
,
6
(13), pp.
2120
2133
.
14.
Tian
,
L.
, and
Collins
,
C.
,
2005
, “
Adaptive Neuro-Fuzzy Control of a Flexible Manipulator
,”
Mechatronics
,
15
(
10
), pp.
1305
1320
.
15.
Zhang
,
L.
, and
Liu
,
J.
,
2013
, “
Adaptive Boundary Control for Flexible Two-Link Manipulator Based on Partial Differential Equation Dynamic Model
,”
IET Control Theory Appl.
,
7
(1), pp.
43
51
.
16.
Pradhan
,
S. K.
, and
Subudhi
,
B.
,
2012
, “
Real-Time Adaptive Control of a Flexible Manipulator Using Reinforcement Learning
,”
IEEE Trans. Autom. Sci. Eng.
,
9
(2), pp.
237
249
.
17.
Feliu
,
V.
,
Rattan
,
K. S.
, and
Brown
,
H. B.
,
1989
, “
Adaptive Control of a Single-Link Flexible Manipulator in the Presence of Joint Friction and Load Changes
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Scottsdale, AZ, May 14–19.
18.
He
,
W.
, and
Ge
,
S. S.
,
2015
, “
Vibration Control of a Flexible Beam With Output Constraint
,”
IEEE Trans. Ind. Electron.
,
62
(
8
), pp.
5023
5030
.
19.
He
,
W.
,
Ge
,
S. S.
, and
Huang
,
D.
,
2015
, “
Modeling and Vibration Control for a Nonlinear Moving String With Output Constraint
,”
IEEE/ASME Trans. Mechatronics
,
20
(4), pp.
1886
1897
.
20.
Clason
,
C.
, and
Kaltenbacher
,
B.
,
2014
, “
Optimal Control of a Singular PDE Modeling Transient MEMS With Control or State Constraints
,”
J. Math. Anal. Appl.
,
410
(
1
), pp.
455
468
.
21.
Meirovitch
,
L.
,
2001
,
Fundamentals of Vibrations
,
McGraw-Hill
,
New York
.
22.
Tee
,
K. P.
,
Ge
,
S. S.
, and
Tay
,
E. H.
,
2009
, “
Barrier Lyapunov Functions for the Control of Output-Constrained Nonlinear Systems
,”
Automatica
,
45
(
4
), pp.
918
927
.
23.
Willis
,
H. R.
,
1981
,
Advanced Process Control
,
McGraw-Hill
,
New York
.
24.
LaSalle
,
J.
, and
Lefschetz
,
S.
,
1961
,
Stability by Lyapunov's Direct Method
,
Academic Press
,
New York
.
You do not currently have access to this content.