The Dubins traveling salesman problem (DTSP) has generated significant interest over the last decade due to its occurrence in several civil and military surveillance applications. This problem requires finding a curvature constrained shortest path for a vehicle visiting a set of target locations. Currently, there is no algorithm that can find an optimal solution to the DTSP. In addition, relaxing the motion constraints and solving the resulting Euclidean traveling salesman problem (ETSP) provide the only lower bound available for the DTSP. However, in many problem instances, the lower bound computed by solving the ETSP is far below the cost of the feasible solutions obtained by some well-known algorithms for the DTSP. This paper addresses this fundamental issue and presents the first systematic procedure for developing tight lower bounds for the DTSP.

References

1.
Rathinam
,
S.
,
Sengupta
,
R.
, and
Darbha
,
S.
,
2007
, “
A Resource Allocation Algorithm for Multivehicle Systems With Nonholonomic Constraints
,”
IEEE Trans. Autom. Sci. Eng.
,
4
(
1
), pp.
98
104
.
2.
Le Ny
,
J.
,
Feron
,
E.
, and
Frazzoli
,
E.
,
2012
, “
On the Dubins Traveling Salesman Problem
,”
IEEE Trans. Autom. Control
,
57
(
1
), pp.
265
270
.
3.
Chandler
,
P.
, and
Pachter
,
M.
,
1998
, “
Research Issues in Autonomous Control of Tactical UAVS
,”
American Control Conference
(
ACC
), Philadelphia, PA, June 24–26, pp.
394
398
.
4.
Medeiros
,
A. C.
, and
Urrutia
,
S.
,
2010
, “
Discrete Optimization Methods to Determine Trajectories for Dubins' Vehicles
,”
Electron. Notes Discrete Math.
,
36
, pp.
17
24
.
5.
Macharet
,
D.
, and
Campos
,
M.
,
2014
, “
An Orientation Assignment Heuristic to the Dubins Traveling Salesman Problem
,”
Advances in Artificial Intelligence
IBERAMIA
2014, Santiago de Chile, Chile, Nov. 24–27, pp.
457
468
.
6.
Macharet
,
D. G.
,
Alves Neto
,
A.
,
da Camara Neto
,
V. F.
, and
Campos
,
M. F.
,
2013
, “
Efficient Target Visiting Path Planning for Multiple Vehicles With Bounded Curvature
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Japan, Nov. 3–7, pp.
3830
3836
.
7.
Macharet
,
D. G.
,
Neto
,
A. A.
,
da Camara Neto
,
V. F.
, and
Campos
,
M. F.
,
2012
, “
Data Gathering Tour Optimization for Dubins' Vehicles
,”
2012 IEEE Congress on Evolutionary Computation
(
CEC
), Brisbane, Australia, June 10–15, pp.
1
8
.
8.
Sujit
,
P.
,
Hudzietz
,
B.
, and
Saripalli
,
S.
,
2013
, “
Route Planning for Angle Constrained Terrain Mapping Using an Unmanned Aerial Vehicle
,”
J. Intell. Rob. Syst.
,
69
(
1–4
), pp.
273
283
.
9.
Kenefic
,
R. J.
,
2008
, “
Finding Good Dubins Tours for UAVS Using Particle Swarm Optimization
,”
J. Aerosp. Comput. Inf. Commun.
,
5
(
2
), pp.
47
56
.
10.
Macharet
,
D. G.
,
Neto
,
A. A.
,
da Camara Neto
,
V. F.
, and
Campos
,
M. F.
,
2011
, “
Nonholonomic Path Planning Optimization for Dubins' Vehicles
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
4208
4213
.
11.
Tang
,
Z.
, and
Ozguner
,
U.
,
2005
, “
Motion Planning for Multitarget Surveillance With Mobile Sensor Agents
,”
IEEE Trans. Rob.
,
21
(
5
), pp.
898
908
.
12.
Savla
,
K.
,
Frazzoli
,
E.
, and
Bullo
,
F.
,
2008
, “
Traveling Salesperson Problems for the Dubins Vehicle
,”
IEEE Trans. Autom. Control
,
53
(
6
), pp.
1378
1391
.
13.
Epstein
,
C.
,
Cohen
,
I.
, and
Shima
,
T.
,
2017
, “On the Discretized Dubins Traveling Salesman Problem,”
IISE Trans.
,
49
(2), pp. 238–254.
14.
Ma
,
X.
, and
Castañón
,
D.
,
2006
, “
Receding Horizon Planning for Dubins Traveling Salesman Problems
,”
45th IEEE Conference on Decision and Control
(
CDC
), San Diego, CA, Dec. 13–15, pp.
5453
5458
.
15.
Isaacs
,
J. T.
, and
Hespanha
,
J. P.
,
2013
, “
Dubins Traveling Salesman Problem With Neighborhoods: A Graph-Based Approach
,”
Algorithms
,
6
(
1
), pp.
84
99
.
16.
Anderson
,
R. P.
, and
Milutinovic
,
D.
,
2014
, “
On the Construction of Minimum-Time Tours for a Dubins Vehicle in the Presence of Uncertainties
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
3
), p.
031001
.
17.
Isaiah
,
P.
, and
Shima
,
T.
,
2015
, “
Motion Planning Algorithms for the Dubins Travelling Salesperson Problem
,”
Automatica
,
53
, pp.
247
255
.
18.
Oberlin
,
P.
,
Rathinam
,
S.
, and
Darbha
,
S.
,
2010
, “
Today's Traveling Salesman Problem
,”
IEEE Rob. Autom. Mag.
,
17
(
4
), pp.
70
77
.
19.
Manyam
,
S. G.
,
Rathinam
,
S.
,
Darbha
,
S.
, and
Obermeyer
,
K. J.
,
2015
, “
Lower Bounds for a Vehicle Routing Problem With Motion Constraints
,”
Int. J. Rob. Autom.
,
30
(
3
).https://drive.google.com/file/d/0BxCsQMzYKbV9eFdaWXlPdVMxTGM/view
20.
Manyam
,
S. G.
,
Rathinam
,
S.
, and
Darbha
,
S.
,
2015
, “
Computation of Lower Bounds for a Multiple Depot, Multiple Vehicle Routing Problem With Motion Constraints
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
9
), p.
094501
.
21.
Manyam
,
S. G.
,
Rathinam
,
S.
,
Darbha
,
S.
, and
Obermeyer
,
K. J.
,
2012
, “Computation of a Lower Bound for a Vehicle Routing Problem With Motion Constraints,”
ASME
Paper No. DSCC2012-MOVIC2012-8713.
22.
Manyam
,
S. G.
,
Rathinam
,
S.
, and
Darbha
,
S.
,
2013
, “
Computation of Lower Bounds for a Multiple Depot, Multiple Vehicle Routing Problem With Motion Constraints
,”
IEEE 52nd Annual Conference on Decision and Control
(
CDC
), Florence, Italy, Dec. 10–13, pp.
2378
2383
.
23.
Dubins
,
L. E.
,
1957
, “
On Curves of Minimal Length With a Constraint on Average Curvature, and With Prescribed Initial and Terminal Positions and Tangents
,”
Am. J. Math.
,
79
(
3
), pp.
497
516
.
24.
Manyam
,
S. G.
,
Rathinam
,
S.
,
Casbeer
,
D.
, and
Garcia
,
E.
,
2017
, “
Tightly Bounding the Shortest Dubins Paths Through a Sequence of Points
,”
J. Intell. Rob. Syst.
,
88
(
2–4
), pp.
495
511
.
25.
Noon
,
C. E.
, and
Bean
,
J. C.
,
1991
, “
A Lagrangian Based Approach for the Asymmetric Generalized Traveling Salesman Problem
,”
Oper. Res.
,
39
(
4
), pp.
623
632
.
26.
Gutin
,
G.
, and
Punnen
,
A. P.
, eds.,
2002
,
The Traveling Salesman Problem and Its Variations
(Combinatorial Optimization),
Kluwer Academic
,
Dordrecht, The Netherlands
.
27.
Applegate
,
D. L.
,
Bixby
,
R. E.
,
Chvatal
,
V.
, and
Cook
,
W. J.
,
2007
,
The Traveling Salesman Problem: A Computational Study
(Princeton Series in Applied Mathematics),
Princeton University Press
,
Princeton, NJ
.
28.
Goaoc
,
X.
,
Kim
,
H.-S.
, and
Lazard
,
S.
,
2013
, “
Bounded-Curvature Shortest Paths Through a Sequence of Points Using Convex Optimization
,”
SIAM J. Comput.
,
42
(
2
), pp.
662
684
.
29.
Boissonnat
,
J.-D.
,
Crzo
,
A.
, and
Leblond
,
J.
,
1994
, “
Shortest Paths of Bounded Curvature in the Plane
,”
J. Intell. Rob. Syst.
,
11
(
1–2
), pp.
5
20
.
30.
Boissonnat
,
J.-D.
, and
Bui
,
X.-N.
,
1994
, “Accessibility Region for a Car That Only Moves Forwards Along Optimal Paths,” INRIA, Saclay, France, Research Report No.
2181
.https://hal.inria.fr/inria-00074491/document
You do not currently have access to this content.