We present two alternative methods for fault detection and isolation (FDI) with redundant Microelectromechanical system (MEMS) inertial measurement units (IMUs) in inertial navigation systems (INS) based on nonlinear observers (NLOs). The first alternative is based on the parity space method, while the second is expanded with quaternion-based averaging and FDI. Both alternatives are implemented and validated using data gathered in a full-scale experiment on an offshore vessel. Data from three identical MEMS IMUs and the vessel's own industrial sensors are used to verify the methods' FDI capabilities. The results reveal that when it comes to FDI of the IMUs' angular rate sensors, there are differences between the two methods. The navigation algorithm based on quaternion weighting is essentially unaffected by the failure of an angular rate sensor, while the parity-space-method-based alternative experiences a perturbation.

References

1.
Barbour
,
N.
,
Hopkins
,
R.
, and
Kourepenis
,
A.
,
2011
, “Inertial MEMS System Applications,” Lecture Notes: Low-Cost Navigation Sensors and Integration Technology, NATO Research and Technology Organisation, Neuilly-sur-Seine, France, Report No.
RTO-EN-SET-116
.https://www.sto.nato.int/publications/STO%20Educational%20Notes/RTO-EN-SET-116-2011/EN-SET-116(2011)-03.pdf
2.
Salcudean
,
S.
,
1991
, “
A Globally Convergent Angular Velocity Observer for Rigid Body Motion
,”
IEEE Trans. Autom. Control
,
36
(
12
), pp.
1493
1497
.
3.
Vik
,
B.
, and
Fossen
,
T.
,
2001
, “
A Nonlinear Observer for GPS and INS Integration
,”
40th IEEE Conference on Decision and Control
(
CDC
), Orlando, FL, Dec. 4–7, pp.
2956
61
.
4.
Mahony
,
R.
,
Hamel
,
T.
, and
Pflimlin
,
J. M.
,
2008
, “
Nonlinear Complementary Filters on the Special Orthogonal Group
,”
IEEE Trans. Autom. Control
,
53
(
5
), pp.
1203
2018
.
5.
Martin
,
P.
, and
Salaün
,
E.
,
2010
, “
Design and Implementation of a Low-Cost Observer-Based Attitude and Heading Reference System
,”
Control Eng. Practice
,
18
(
7
), pp.
712
722
.
6.
Hua
,
M.-D.
,
2010
, “
Attitude Estimation for Accelerated Vehicles Using GPS/INS Measurements
,”
Control Eng. Practice
,
18
(
7
), pp.
723
732
.
7.
Grip
,
H. F.
,
Fossen
,
T. I.
,
Johansen
,
T. A.
, and
Saberi
,
A.
,
2012
, “
Attitude Estimation Using Biased Gyro and Vector Measurements With Time-Varying Reference Vectors
,”
IEEE Trans. Autom. Control
,
57
(
5
), pp.
1332
1338
.
8.
Batista
,
P.
,
Silvestre
,
C.
, and
Oliveira
,
P.
,
2012
, “
A GES Attitude Observer With Single Vector Observations
,”
Automatica
,
48
(
2
), pp.
388
395
.
9.
Batista
,
P.
,
Silvestre
,
C.
, and
Oliveira
,
P.
,
2012
, “
Globally Exponentially Stable Cascade Observers for Attitude Estimation
,”
Control Eng. Practice
,
20
(
2
), pp.
148
155
.
10.
Hua
,
M.-D.
,
Ducard
,
G.
,
Hamel
,
T.
,
Mahony
,
R.
, and
Rudin
,
K.
,
2014
, “
Implementation of a Nonlinear Attitude Estimator for Aerial Robotic Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
22
(
1
), pp.
201
212
.
11.
Hua
,
M.-D.
,
Martin
,
P.
, and
Hamel
,
T.
,
2016
, “
Stability Analysis of Velocity-Aided Attitude Observers for Accelerated Vehicles
,”
Automatica
,
63
, pp.
11
15
.
12.
Farrell
,
J. A.
,
2008
,
Aided Navigation: GPS with High Rate Sensors
,
McGraw-Hill
, New York.
13.
Groves
,
P. D.
,
2013
,
Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems
, 2nd ed.,
Artech House
, Norwood, MA.
14.
Markley
,
F. L.
,
2003
, “
Attitude Error Representation for Kalman Filtering
,”
J. Guid., Control Dyn.
,
26
(
2
), pp.
311
317
.
15.
Willsky
,
A.
, and
Jones
,
H.
,
1976
, “
A Generalized Likelihood Ratio Approach to the Detection and Estimation of Jumps in Linear Systems
,”
IEEE Trans. Autom. Control
,
21
(
1
), pp.
108
112
.
16.
Daly
,
K. C.
,
Gai
,
E.
, and
Harrison
,
J. V.
,
1979
, “
Generalized Likelihood Test for FDI in Redundant Sensor Configurations
,”
J. Guid., Control, Dyn.
,
2
(
1
), pp.
9
17
.
17.
Sturza
,
M. A.
,
1988
, “
Navigation System Integrity Monitoring Using Redundant Measurements
,”
Navigation
,
35
(
4
), pp.
483
501
.
18.
Medvedev
,
A.
,
1995
, “
Fault Detection and Isolation by a Continuous Parity Space Method
,”
Automatica
,
31
(
7
), pp.
1039
1044
.
19.
Guerrier
,
S.
,
Waegli
,
A.
,
Skaloud
,
J.
, and
Victoria-Feser
,
M.-P.
,
2012
, “
Fault Detection and Isolation in Multiple Mems-Imus Configurations
,”
IEEE Trans. Aerosp. Electron. Syst.
,
48
(
3
), pp.
2015
2031
.
20.
Waegli
,
A.
,
Guerrier
,
S.
, and
Skaloud
,
J.
,
2008
, “
Redundant MEMS-IMU Integrated With GPS for Performance Assessment in Sports
,”
IEEE/ION
Position, Location and Navigation Symposium
, Monterey, CA, May 5–8, pp.
1260
1268
.
21.
Carminati
,
M.
,
Ferrari
,
G.
,
Grassetti
,
R.
, and
Sampietro
,
M.
,
2012
, “
Real-Time Data Fusion and Mems Sensors Fault Detection in an Aircraft Emergency Attitude Unit Based on Kalman Filtering
,”
IEEE Sensors J.
,
12
(
10
), pp.
2984
2992
.
22.
Sukkarieh
,
S.
,
Gibbens
,
P.
,
Grocholsky
,
B.
,
Willis
,
K.
, and
Durrant-Whyte
,
H. F.
,
2000
, “
A Low-Cost, Redundant Inertial Measurement Unit for Unmanned Air Vehicles
,”
Int. J. Rob. Res.
,
19
(
11
), pp.
1089
1103
.
23.
Cork
,
L.
, and
Walker
,
R.
,
2007
, “
Sensor Fault Detection for UAVs Using a Nonlinear Dynamic Model and the IMM-UKF Algorithm
,” Information, Decision and Control (
IDC
), Adelaide, Australia, Feb. 12–14, pp.
230
235
.
24.
Monteriù
,
A.
,
Asthana
,
P.
,
Valavanis
,
K.
, and
Longhi
,
S.
,
2007
, “
Residual Generation Approaches in Navigation Sensors Fault Detection Applications
,”
European Control Conference
(
ECC
), Kos, Greece, July 2–5, pp.
1022
1029
.http://ieeexplore.ieee.org/document/7068982/
25.
Yin
,
S.
, and
Zhu
,
X.
,
2015
, “
Intelligent Particle Filter and Its Application to Fault Detection of Nonlinear System
,”
IEEE Trans. Ind. Electron.
,
62
(
6
), pp.
3852
3861
.
26.
Rogne
,
R. H.
,
Bryne
,
T. H.
,
Johansen
,
T. A.
, and
Fossen
,
T. I.
,
2016
, “
Fault Detection in Lever-Arm-Compensated Position Reference Systems Based on Nonlinear Attitude Observers and Inertial Measurements in Dynamic Positioning
,”
American Control Conference
(
ACC
), Boston, MA, July 6–8, pp.
985
992
.
27.
Bryne
,
T. H.
,
Fossen
,
T. I.
, and
Johansen
,
T. A.
,
2015
, “
Design of Inertial Navigation Systems for Marine Craft With Adaptive Wave Filtering Aided by Triple-Redundant Sensor Packages
,”
Int. J. Adapt. Control Signal Process.
,
31
(4), pp.
522
544
.
28.
Grip
,
H. F.
,
Fossen
,
T. I.
,
Johansen
,
T. A.
, and
Saberi
,
A.
,
2013
, “
Nonlinear Observer for GNSS-Aided Inertial Navigation With Quaternion-Based Attitude Estimation
,”
American Control Conference
(
ACC
), Washington, DC, June 17–19, pp.
272
279
.
29.
Markley
,
F. L.
,
2007
, “
Averaging Quaternions
,”
J. Guid., Control Dyn.
,
30
(
4
), pp.
1193
1196
.
30.
Bhat
,
S.
, and
Bernstein
,
D.
,
2000
, “
A Topological Obstruction to Continuous Global Stabilization of Rotational Motion and the Unwinding Phenomenon
,”
Syst. Control Lett.
,
39
(
1
), pp.
63
70
.
31.
Chou
,
J. C.
,
1992
, “
Quaternion Kinematic and Dynamic Differential Equations
,”
IEEE Trans. Rob. Autom.
,
8
(
1
), pp.
53
64
.
32.
Bryne
,
T. H.
,
Fossen
,
T. I.
, and
Johansen
,
T. A.
,
2015
, “
A Virtual Vertical Reference Concept for GNSS/INS Applications at the Sea Surface
,”
Tenth IFAC Conference Manoeuvring Control of Marine Craft
, Copenhagen, Denmark, Aug. 24–26, pp.
127
133
.
33.
Rogne
,
R. H.
,
Bryne
,
T. H.
,
Fossen
,
T. I.
, and
Johansen
,
T. A.
,
2016
, “
MEMS-Based Inertial Navigation on Dynamically Positioned Ships: Dead Reckoning
,”
Tenth IFAC Conference on Control Application in Marine Systems
, Copenhagen, Denmark, Aug. 24–26, pp.
139
146
.
You do not currently have access to this content.