When a parallel-plate electrostatic actuator (ESA) is driven by a voltage source, pull-in instability limits the range of displacement to one-third of the gap between plates. In this paper, a nonlinear active disturbance rejection controller (NADRC) is originally developed on the ESA. Our control objectives are stabilizing and increasing the displacement of an ESA to 99.99% of its full gap. Most of the reported controllers in literature are based on linearized models of the ESAs and depend on detailed model information of them. However, the ESA is inherently nonlinear and has model uncertainties due to the imperfections of microfabrication and packaging. The NADRC consists of a nonlinear extended state observer (NESO) and a feedback controller. The NESO is used to estimate system states and unknown nonlinear dynamics for the ESA. Therefore, it does not require accurate model. We simulate the NADRC on a nonlinear ESA in the presences of external disturbance, system uncertainties, and noise. The simulation results verify the effectiveness of the controller by successfully extending the travel range of ESA beyond pull-in point. They also demonstrate that the controller is robust against both disturbance and parameter variations, and has low sensitivity to measurement noise. Furthermore, the stability for the control system with NADRC is theoretically proved.

References

References
1.
Hsu
,
T. R.
,
2008
,
MEMS and Microsystems: Design, Manufacture, and Nanoscale Engineering
,
2nd ed.
,
Wiley
, Hoboken, NJ.
2.
Guardia
,
R. A.
,
Dehe
,
A.
,
Aigner
,
R.
, and
Castaner
,
L. M.
,
2002
, “
Current Drive Methods to Extend the Range of Travel of Electrostatic Microactuators Beyond the Voltage Pull-in Point
,”
J. Micro-Electro-Mech. Syst.
,
11
(
3
), pp.
255
263
.
3.
Seeger
,
J. I.
, and
Boser
,
B. E.
,
2003
, “
Charge Control of Parallel-Plate, Electrostatic Actuators and the Tip-In Instability
,”
J. Micro-Electro-Mech. Syst.
,
12
(
5
), pp.
656
671
.
4.
Wickramasinghe
,
I. P. M.
,
Maithripala
,
D. H. S.
,
Kawade
,
B. D.
,
Berg
,
J. M.
, and
Dayawansa
,
W. P.
,
2009
, “
Passivity-Based Stabilization of 1-DOF Electrostatic MEMS Model With a Parasitic Capacitance
,”
IEEE Trans. Control Syst. Technol.
,
17
(
1
), pp.
249
256
.
5.
Zhu
,
G.
,
Levine
,
J.
, and
Praly, L.
,
2005
, “
Improving the Performance of an Electrostatically Actuated MEMS by Nonlinear Control: Some Advances and Comparisons
,” 44th IEEE Conference on Decision and Control and European Control Conference (
CDC-ECC
), Seville, Spain, Dec. 12–15, pp.
7534
7539
.
6.
Zhu
,
G.
,
Levine
,
J.
,
Praly
,
L.
, and
Peter
,
Y. A.
,
2006
, “
Flatness-Based Control of Electrostatically Actuated MEMS With Application to Adaptive Optics: A Simulation Study
,”
J. Micro-Electro-Mech. Syst.
,
15
(
5
), pp.
1165
1174
.
7.
Zhu
,
G.
,
Praly
,
L.
, and
Levine
,
J.
,
2007
, “
Stabilization of an Electrostatic MEMS Including Uncontrollable Linearization
,” 46th IEEE Conference on Decision and Control (
CDC
), New Orleans, LA, Dec. 12–14, pp.
2433
2438
.
8.
Maithripala
,
D. H. S.
,
Berg
,
J. M.
, and
Dayawansa
,
W. P.
,
2004
, “
Control of an Electrostatic Micro-Electro-Mechanical System Using Static and Dynamic Output Feedback
,”
ASME J. Dyn. Syst. Meas. Control
,
127
(
3
), pp.
443
450
.
9.
Dong
,
L.
, and
Edward
,
J.
,
2010
, “
Closed-Loop Voltage Control of a Parallel-Plate MEMS Electrostatic Actuator
,” American Control Conference (
ACC
), Baltimore, MD, June 30–July 2, pp.
3409
3414
.
10.
Shirazi
,
F. A.
,
Velni
,
J. M.
, and
Grigoriadis
,
K. M.
,
2011
, “
A LPV Design Approach for Voltage Control of an Electrostatic MEMS Actuator
,”
J. Micro-Electro-Mech. Syst.
,
20
(
1
), pp.
302
311
.
11.
Alwi
,
H.
,
Zolotas
,
A.
,
Edwards
,
C.
, and
Grigoriadis
,
K.
,
2012
, “
Sliding Mode Control Design of an Electrostatic Micro-Actuator Using LPV Schemes
,” American Control Conference (
ACC
), Motreal, QC, Canada, June 27–29, pp.
875
880
.
12.
Vagia
,
M.
, and
Tzes
,
A.
,
2009
, “
Modeling Aspects and Gain Scheduled H∞ Controller Design for an Electro-Static Micro-Actuator With Squeezed Gas Film Damping Effects
,” American Control Conference (
ACC
), St. Louis, MO, June 10–12, pp.
4805
4810
.
13.
Rocha
,
L. A.
,
Cretu
,
E.
, and
Wolffenbuttel
,
R. F.
,
2006
, “
Using Dynamic Voltage Drive in a Parallel-Plate Electrostatic Actuator for Full-Gap Travel Range and Positioning
,”
J. Micro-Electro-Mech. Syst.
,
15
(
1
), pp.
69
83
.
14.
Senturia
,
S. D.
,
2001
,
Microsystem Design
,
Springer Science and Business Media
,
New York
.
15.
Xue
,
W.
, and
Huang
,
Y.
,
2015
, “
Performance Analysis of Active Disturbance Rejection Tracking Control for a Class of Uncertain LTI Systems
,”
ISA Trans.
,
58
, pp.
133
154
.
16.
Huang
,
Y.
,
Xue
,
W.
,
Zhiqiang
,
G.
,
Sira-Ramirez
,
H.
,
Wu
,
D.
, and
Sun
,
M.
,
2014
, “
Active Disturbance Rejection Control: Methodology and Theoretical Analysis
,”
ISA Trans.
,
53
(4), pp.
963
976
.
17.
Chen
,
W. H.
,
Yang
,
J.
,
Guo
,
L.
, and
Li
,
S.
,
2016
, “
Disturbance Observer-Based Control and Related Methods: An Overview
,”
IEEE Trans. Ind. Electron.
,
63
(2), pp.
1083
1095
.
18.
Shao
,
S.
, and
Gao
,
Z.
,
2017
, “
On the Conditions of Exponential Stability in Active Disturbance Rejection Control Based on Singular Perturbation Analysis
,”
Int. J. Control
,
90
(
10
), pp.
1
13
.
19.
Gao
,
Z.
,
2015
, “
Active Disturbance Rejection Control: From an Enduring Idea to an Emerging Technology
,” Tenth IEEE International Workshop on Robot Motion and Control (
RoMoCo
), Poznan, Poland, July 6–8, pp.
269
282
.
20.
Guo
,
B.
, and
Zhao
,
Z.
,
2011
, “
On Convergence of an Extended State Observer for Nonlinear Systems With Uncertainty
,”
Syst. Control Lett.
,
60
(
6
), pp.
420
430
.
21.
Guo
,
B.
, and
Zhao
,
Z.
,
2016
, “
On Convergence of Nonlinear Active Disturbance Rejection for SISO Nonlinear Systems
,”
J. Dyn. Control Syst.
,
22
(
2
), pp.
385
412
.
22.
Guo
,
B.
, and
Zhao
,
Z.
,
2012
, “
On Convergence of the Nonlinear Extended State Observer for MIMO Systems With Uncertainty
,”
IET Control Theory Appl.
,
6
(15), p. 2375.
23.
Guo
,
B.
, and
Zhao
,
Z.
,
2013
, “
On Convergence of the Nonlinear Active Disturbance Rejection Control for MIMO Systems
,”
SIAM J. Control Optim.
,
51
(
2
), pp.
1727
1757
.
24.
Dong
,
L.
,
Kandula
,
P.
,
Gao
,
Z.
, and
Wang
,
D.
,
2010
, “
On a Robust Control System Design for an Electric Power Assist Steering System
,” American Control Conference (
ACC
), Baltimore, MD, June 30–July 2, pp.
5356
5361
.
25.
Dong
,
L.
,
Kandula
,
P.
,
Wang
,
D.
, and
Gao
,
Z.
,
2010
, “
Active Disturbance Rejection Control for an Electric Power Assist Steering System
,”
J. Intell. Control Syst.
,
15
(
1
), pp.
18
24
.https://pdfs.semanticscholar.org/efcc/1a3232e47b10be4b8213fa037c705b78b2c1.pdf
26.
Dong
,
L.
,
Zhang
,
Y.
, and
Gao
,
Z.
,
2012
, “
A Robust Decentralized Load Frequency Controller for Interconnected Power Systems
,”
ISA Trans.
,
51
(
3
), pp.
410
419
.
27.
Chen
,
Z.
,
Zheng
,
Q.
, and
Gao
,
Z.
,
2007
, “
Active Disturbance Rejection Control of Chemical Processes
,”
IEEE International Conference on Control Applications
(
CCA
), Singapore, Oct. 1–3, pp.
855
861
.
28.
Zhang
,
H.
,
Sun
,
Y.
,
Gao
,
Z.
, and
Wang
,
Y.
,
2014
, “
A Disturbance Rejection Framework for the Study of Traditional Chinese Medicine
,”
Evidence-Based Complementary Altern. Med.
,
2014
(6), p. 787529.
29.
Dong
,
L.
, and
Avanesian
,
D.
,
2009
, “
Drive-Mode Control for Vibrational MEMS Gyroscopes
,”
IEEE Trans. Ind. Electron.
,
56
(
4
), pp.
956
963
.
30.
Gao
,
Z.
,
2006
, “
Active Disturbance Rejection Control: A Paradigm Shift in Feedback Control System Design
,” American Control Conference (
ACC
), Minneapolis, MN, June 14–16, pp.
2399
2406
.
31.
Tian
,
G.
, and
Gao
,
Z.
,
2007
, “
Frequency Response Analysis of Active Disturbance Rejection Based Control System
,” IEEE International Conference on Control Applications (
CCA
), Singapore, Oct. 1–3, pp.
1595
1599
.
32.
Dong
,
L.
,
Zheng
,
Q.
, and
Gao
,
Z.
,
2008
, “
On Control System Design for the Conventional Mode of Operation of Vibrational Gyroscopes
,”
IEEE Sens. J.
,
8
(
11
), pp.
1871
1878
.
33.
Han
,
J.
,
2009
, “
From PID to Active Disturbance Rejection Control
,”
IEEE Trans. Ind. Electron.
,
56
(
3
), pp.
900
906
.
34.
Gao
,
Z.
,
2014
, “
On the Centrality of Disturbance Rejection in Automatic Control
,”
ISA Trans.
,
53
(
4
), pp.
850
857
.
35.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
, Prentice-Hall,
Englewood Cliffs, NJ
.
You do not currently have access to this content.