In this study, the design of a smooth robust velocity observer for a class of uncertain nonlinear mechatronic systems is presented. The proposed velocity observer does not require a priori knowledge of the upper bounds of the uncertain system dynamics and introduces time-varying observer gains for uncertainty compensation. Practical stability of the velocity observation error is ensured via Lyapunov-type stability analysis. Experimental results obtained from Phantom Omni haptic device are presented to illustrate the performance of the proposed velocity observer.

References

References
1.
Su
,
Y. X.
,
Zheng
,
C. H.
,
Mueller
,
P. C.
, and
Duan
,
B. Y.
,
2006
, “
A Simple Improved Velocity Estimation for Low-Speed Regions Based on Position Measurements Only
,”
IEEE Trans. Control Syst. Technol.
,
14
(
5
), pp.
937
942
.
2.
Arimoto
,
S.
,
Parra-Vega
,
V.
, and
Naniwa
,
T.
,
1994
, “
A Class of Linear Velocity Observers for Nonlinear Mechanical Systems
,”
Asian Control Conference
, Tokyo, Japan, July 27–30, pp.
633
636
.
3.
Abdessameud
,
A.
, and
Khelfi
,
M. F.
,
2006
, “
A Variable Structure Observer for the Control of Robot Manipulators
,”
Int. J. Appl. Math. Compt. Sci.
,
16
(
2
), pp.
189
196
.https://eudml.org/doc/207784
4.
de Wit
,
C. C.
, and
Slotine
,
J.
,
1991
, “
Sliding Observers for Robot Manipulators
,”
Automatica
,
27
(
5
), pp.
859
864
.
5.
Astolfi
,
A.
,
Ortega
,
R.
, and
Venkatraman
,
A.
,
2010
, “
A Globally Exponentially Convergent Immersion and Invariance Speed Observer for Mechanical Systems With Non-Holonomic Constraints
,”
Automatica
,
46
(
5
), pp.
182
189
.
6.
Namvar
,
M.
,
2009
, “
A Class of Globally Convergent Velocity Observers for Robotic Manipulators
,”
IEEE Trans. Autom. Control
,
54
(
8
), pp.
1956
1961
.
7.
Romero
,
J. G.
, and
Ortega
,
R.
,
2015
, “
Two Globally Convergent Adaptive Speed Observers for Mechanical Systems
,”
Automatica
,
60
, pp.
7
11
.
8.
Choi
,
J.-H.
,
Misawa
,
E. A.
, and
Young
,
G. E.
,
1999
, “
A Study on Sliding Mode State Estimation
,”
ASME J. Dyn. Syst. Meas. Control
,
121
(
6
), pp.
255
260
.
9.
Davila
,
J.
,
Fridman
,
L.
, and
Levant
,
A.
,
2005
, “
Second-Order Sliding-Mode Observer for Mechanical Systems
,”
IEEE Trans. Autom. Control
,
50
(
11
), pp.
1785
1789
.
10.
Dawson
,
D. M.
,
Qu
,
Z.
, and
Carroll
,
J. C.
,
1992
, “
On the State Observation and Output Feedback Problems for Nonlinear Uncertain Dynamic Systems
,”
Syst. Control Lett.
,
18
(
2
), pp.
217
222
.
11.
González
,
I.
,
Salazar
,
S.
, and
Lozano
,
R.
,
2014
, “
Chattering-Free Sliding Mode Altitude Control for a Quad-Rotor Aircraft: Real-Time Application
,”
J. Intell. Rob. Syst.
,
73
(1–4), pp.
137
155
.
12.
Ramirez-Rodriguez
,
H.
,
Parra-Vega
,
V.
,
Sanchez-Orta
,
A.
, and
Garcia-Salazar
,
O.
,
2014
, “
Robust Backstepping Control Based on Integral Sliding Modes for Tracking of Quadrotors
,”
J. Intell. Rob. Syst.
,
73
(1–4), pp.
51
66
.
13.
Walcott
,
B.
, and
Zak
,
S.
,
1987
, “
State Observation of Nonlinear Uncertain Dynamical Systems
,”
IEEE Trans. Autom. Control
,
32
(
2
), pp.
166
170
.
14.
Xiong
,
Y.
, and
Saif
,
M.
,
2001
, “
Sliding Mode Observer for Nonlinear Uncertain Systems
,”
IEEE Trans. Autom. Control
,
46
(
12
), pp.
2012
2017
.
15.
Xian
,
B.
,
de Queiroz
,
M.
,
Dawson
,
D.
, and
McIntyre
,
M.
,
2004
, “
A Discontinuous Output Feedback Controller and Velocity Observer for Nonlinear Mechanical Systems
,”
Automatica
,
40
(
4
), pp.
695
700
.
16.
Atassi
,
A. N.
, and
Khalil
,
H. K.
,
1999
, “
A Separation Principle for the Stabilization of a Class of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
44
(
9
), pp.
1672
1687
.
17.
Chen
,
J.
,
Behal
,
A.
, and
Dawson
,
D.
,
2008
, “
Robust Feedback Control for a Class of Uncertain MIMO Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
53
(
2
), pp.
591
596
.
18.
Teel
,
A.
, and
Praly
,
L.
,
1994
, “
Global Stabilizability and Observability Imply Semi Global Stabilizability by Output Feedback
,”
Syst. Control Lett.
,
22
(
2
), pp.
313
325
.
19.
Dasdemir
,
J.
, and
Zergeroglu
,
E.
,
2015
, “
A New Continuous High-Gain Controller Scheme for a Class of Uncertain Nonlinear Systems
,”
Int. J. Robust Nonlinear Control
,
25
(
1)
, pp.
125
141
.
20.
Lewis
,
F.
,
Dawson
,
D.
, and
Abdallah
,
C.
,
2004
,
Robot Manipulator Control: Theory and Practice
,
Marcel Dekker
,
New York
.
You do not currently have access to this content.