Road adhesion coefficient is an important parameter in vehicle active safety control system. Many researchers estimate road adhesion coefficient by total tire self-aligning torque (SAT, also called front-axle aligning torque), which obtains the average road adhesion coefficient of front wheels, thus leading large estimation error. In this paper, a novel estimation of road adhesion coefficient based on single tire SAT, which is obtained by tire aligning torque distribution, is brought forward. Due to the use of SAT, the proposed estimation method is available in steering only condition. The main idea of the proposed method is that road adhesion coefficient is estimated by single tire SAT instead of total tire SAT. The single tire SAT is closer to real tire torque state, and it can be obtained by aligning torque distribution, which makes use of the ratio for the aligning torque of front-left wheel and front-right wheel. Tire sideslip angle used in torque distribution is estimated by unscented Kalman filter (UKF). Two coefficients, including front-left and front-right tire-road friction coefficients, are estimated by iteration algorithm form single tire SAT. The final road adhesion coefficient is determined by a coefficient identification rule, which is designed to determine which tire-road friction coefficient as the final road adhesion coefficient. Both simulations and tests that use gyroscope/lateral accelerometer/global position system (GPS)/strain gauge are conducted, to validate the proposed methodology that can provide accurate road adhesion coefficient to vehicle active safety control.

References

References
1.
Li
,
J.
,
Song
,
Z.
,
Shuai
,
Z.
,
Xu
,
L.
, and
Ouyang
,
M.
,
2015
, “
Wheel Slip Control Using Sliding-Mode Technique and Maximum Transmissible Torque Estimation
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
11
), p.
111010
.
2.
Jia
,
G.
,
Li
,
L.
, and
Cao
,
D.
,
2015
, “
Model-Based Estimation for Vehicle Dynamics States at the Limit Handling
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
10
), p.
104501
.
3.
Sato
,
Y.
,
Kobayashi
,
D.
,
Kageyama
,
I.
,
Watanabe
,
K.
,
Kuriyagawa
,
Y.
, and
Kuriyagawa
,
Y.
,
2007
, “
Study on Recognition Method for Road Friction Condition
,”
Trans. Soc. Automot. Eng. Jpn.
,
38
(
2
), pp.
51
56
.http://ci.nii.ac.jp/naid/10024392028/
4.
Muller
,
S.
,
Uchanski
,
M.
, and
Hedrick
,
K.
,
2003
, “
Estimation of the Maximum Tire-Road Friction Coefficient
,”
ASME J. Dyn. Syst. Meas. Control
,
125
(
4
), pp.
607
617
.
5.
Villagra
,
J.
,
d’Andréa-Novel
,
B.
,
Fliess
,
M.
, and
Mounier
,
H.
,
2011
, “
A Diagnosis-Based Approach for Tire–Road Forces and Maximum Friction Estimation
,”
Control Eng. Pract.
,
19
(
2
), pp.
174
184
.
6.
Singh
,
K. B.
, and
Taheri
,
S.
,
2015
, “
Estimation of Tire–Road Friction Coefficient and Its Application in Chassis Control Systems
,”
Syst. Sci. Control Eng.
,
3
(
1
), pp.
39
61
.
7.
Rath
,
J. J.
,
Veluvolu
,
K. C.
,
Defoort
,
M.
, and
Soh
,
Y. C.
,
2014
, “
Higher-Order Sliding Mode Observer for Estimation of Tyre Friction in Ground Vehicles
,”
IET Control Theory Appl.
,
8
(
6
), pp.
399
408
.
8.
Bian
,
M.
,
Chen
,
L.
,
Luo
,
Y.
, and
Li
,
K.
,
2014
, “A Dynamic Model for Tire/Road Friction Estimation Under Combined Longitudinal/Lateral Slip Situation,”
SAE
Paper No. 2014-01-0123.
9.
Breuer
,
B.
,
Eichhorn
,
U.
, and
Roth
,
J.
,
1992
, “
Measurement of Tyre/Road-Friction Ahead of the Car and Inside the Tyre
,” International Symposium on Advanced Vehicle Control (
AVEC
), Yokohama, Japan, Sept. 14–17, pp. 347–353.https://trid.trb.org/view.aspx?id=1169439
10.
Eichhorn
,
U.
, and
Roth
,
J.
,
1992
, “Prediction and Monitoring of Tyre/Road Friction,”
Safety, the Vehicle and the Road, Vol. 2, XXIV Fisita Congress, Automotive Technology Servicing Society
, London, June 7–11, pp. 67–74.https://trid.trb.org/view.aspx?id=425031
11.
Carcaterra
,
A.
, and
Roveri
,
N.
,
2013
, “
Tire Grip Identification Based on Strain Information: Theory and Simulations
,”
Mech. Syst. Signal Process.
,
41
(
1
), pp.
564
580
.
12.
Cheli
,
F.
,
Braghin
,
F.
,
Brusarosco
,
M.
,
Mancosu
,
F.
, and
Sabbioni
,
E.
,
2011
, “
Design and Testing of an Innovative Measurement Device for Tyre–Road Contact Forces
,”
Mech. Syst. Signal Process.
,
25
(
6
), pp.
1956
1972
.
13.
Hong
,
S.
,
Erdogan
,
G.
,
Hedrick
,
K.
, and
Borrelli
,
F.
,
2013
, “
Tyre–Road Friction Coefficient Estimation Based on Tyre Sensors and Lateral Tyre Deflection: Modelling, Simulations and Experiments
,”
Veh. Syst. Dyn.
,
51
(
5
), pp.
627
647
.
14.
Rajamani
,
R.
,
Phanomchoeng
,
G.
,
Piyabongkarn
,
D.
, and
Lew
,
J. Y.
,
2012
, “
Algorithms for Real-Time Estimation of Individual Wheel Tire-Road Friction Coefficients
,”
IEEE/ASME Trans. Mech.
,
17
(
6
), pp.
1183
1195
.
15.
Lee
,
C.
,
Hedrick
,
K.
, and
Yi
,
K.
,
2004
, “
Real-Time Slip-Based Estimation of Maximum Tire-Road Friction Coefficient
,”
IEEE/ASME Trans. Mech.
,
9
(
2
), pp.
454
458
.
16.
Hahn
,
J. O.
,
Rajamani
,
R.
, and
Alexander
,
L.
,
2002
, “
GPS-Based Real-Time Identification of Tire-Road Friction Coefficient
,”
IEEE Trans. Control Syst. Technol.
,
10
(
3
), pp.
331
343
.
17.
Zhu
,
H.
,
Li
,
L.
,
Jin
,
M.
,
Li
,
H.
, and
Song
,
J.
,
2013
, “
Real-Time Yaw Rate Prediction Based on a Non-Linear Model and Feedback Compensation for Vehicle Dynamics Control
,”
Proc. Inst. Mech. Eng. D
,
227
(
10
), pp.
1431
1445
.
18.
Li
,
L.
,
Song
,
J.
,
Li
,
H. Z.
,
Shan
,
D. S.
,
Kong
,
L.
, and
Yang
,
C. C.
,
2009
, “
Comprehensive Prediction Method of Road Friction for Vehicle Dynamics Control
,”
Proc. Inst. Mech. Eng. D
,
223
(
8
), pp.
987
1002
.
19.
Li
,
L.
,
Yang
,
K.
,
Jia
,
G.
,
Ran
,
X.
,
Song
,
J.
, and
Han
,
Z. Q.
,
2015
, “
Comprehensive Tire–Road Friction Coefficient Estimation Based on Signal Fusion Method Under Complex Maneuvering Operations
,”
Mech. Syst. Signal Process.
,
56–57
, pp.
259
276
.
20.
Nishihara
,
O.
, and
Masahiko
,
K.
,
2011
, “
Estimation of Road Friction Coefficient Based on the Brush Model
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
4
), p.
041006
.
21.
Wang
,
R.
,
Yin
,
G.
, and
Wang
,
J.
,
2012
, “Vehicle Lateral Velocity and Tire-Road Friction Coefficient Estimation,”
ASME
Paper No. DSCC2012-MOVIC2012-8575.
22.
Wang
,
R.
,
Hu
,
C.
,
Wang
,
Z.
,
Yan
,
F.
, and
Chen
,
N.
,
2015
, “
Integrated Optimal Dynamics Control of 4WD4 WS Electric Ground Vehicle With Tire-Road Frictional Coefficient Estimation
,”
Mech. Syst. Signal. Process.
,
60–61
, pp.
727
741
.
23.
Hu
,
C.
,
Wang
,
R.
,
Wang
,
Z.
,
Chadli
,
M.
, and
Yan
,
F.
,
2015
, “
Integrated Optimal Dynamics Control of 4WS4WD Electric Ground Vehicles With Tire-Road Frictional Coefficient Estimation
,” American Control Conference (
ACC
), Chicago, IL, July 1–3, pp.
5426
5431
.
24.
Hsu
,
Y. H. J.
,
Laws
,
S. M.
, and
Gerdes
,
J. C.
,
2010
, “
Estimation of Tire Slip Angle and Friction Limits Using Steering Torque
,”
IEEE Trans. Control Syst. Technol.
,
18
(
4
), pp.
896
907
.
25.
Hsu
,
Y. H. J.
,
Laws
,
S.
,
Gadda
,
C. D.
, and
Gerdes
,
J. C.
,
2006
, “A Method to Estimate the Friction Coefficient and Tire Slip Angle Using Steering Torque,”
ASME
Paper No. IMECE2006-15402.
26.
Yasui
,
Y.
,
Tanaka
,
W.
,
Muragishi
,
Y.
,
Ono
,
E.
,
Momiyama
,
M.
,
Katoh
,
H.
,
Aizawa
,
H.
, and
Imoto
,
Y.
,
2004
, “Estimation of Lateral Grip Margin Based on Self-Aligning Torque for Vehicle Dynamics Enhancement,”
SAE
Paper No. 2004-01-1070.
27.
Matsuda
,
T.
,
Jo
,
S. I.
,
Nishira
,
H.
, and
Deguchi
,
Y.
,
2013
, “
Instantaneous Estimation of Road Friction Based on Front Tire Sat Using Kalman Filter
,”
SAE Int. J. Passenger Cars Mech. Syst.
,
6
(
1
), pp.
147
153
.
28.
Mitchell
,
W. C.
,
Staniforth
,
A.
, and
Scott
,
I.
,
2006
, “Analysis of Ackermann Steering Geometry,”
SAE
Paper No. 2006-01-3638.
29.
Liu
,
Y. H.
,
Li
,
T.
,
Yang
,
Y. Y.
,
Ji
,
X. W.
, and
Wu
,
J.
,
2017
, “
Estimation of Tire-Road Friction Coefficient Based on Combined APF-IEKF and Iteration Algorithm
,”
Mech. Syst. Signal Process.
,
88
, pp.
25
35
.
30.
Yih
,
P.
,
Ryu
,
J.
, and
Gerdes
,
J. C.
,
2004
, “
Vehicle State Estimation Using Steering Torque
,” American Control Conference (
ACC
), Boston, MA, June 30–July 2, pp.
2116
2121
.http://ieeexplore.ieee.org/document/1383773/
31.
Li
,
L.
,
Jia
,
G.
,
Ran
,
X.
,
Song
,
J.
, and
Wu
,
K.
,
2014
, “
A Variable Structure Extended Kalman Filter for Vehicle Sideslip Angle Estimation on a Low Friction Road
,”
Vehicle Syst. Dyn.
,
52
(
2
), pp.
280
308
.
32.
Jin
,
X.
, and
Yin
,
G.
,
2015
, “
Estimation of Lateral Tire–Road Forces and Sideslip Angle for Electric Vehicles Using Interacting Multiple Model Filter Approach
,”
J. Franklin Inst.
,
352
(
2
), pp.
686
707
.
33.
Liu
,
Y. H.
, and
Ji
,
X. W.
,
2011
, “
Matching Strategy of Electric Power Steering Assistant Characters Based on the Vehicle Inherent Road Feel
,”
Proc. Inst. Mech. Eng. D
,
225
(
11
), pp.
1481
1491
.
34.
Ma
,
B.
,
Liu
,
Y. H.
,
Ji
,
X. W.
, and
Yang
,
Y. Y.
,
2017
, “
Steering Defect Investigation and Its Compensation Using Steering Torque Control Strategy Under an Extreme Driving Situation
,”
Proc. Inst. Mech. Eng. D
, epub.
You do not currently have access to this content.