Many industrial and laboratory applications which make use of electric machines require noninterruption operation, even in the presence of faults, such as power generation and electric vehicles. Under fault scenarios, the performance of the system is expected to degrade and control techniques may be helpful to overcome this issue. Within this context, phase faults are obviously undesired, as may lead the machine to stop operating. Switched reluctance machines (SRM), due to its inherit characteristics, are naturally tolerant to phase faults, despite the loss of performance. Most of the techniques used to improve the performance of SRMs in fault situations are related to the switching feed converter. Regarding this issue, instead of presenting an alternative converter topology, this work alternatively proposes a control approach which significantly reduces the phase faults effects on the speed of the motor. Furthermore, the high-frequency noise is attenuated when compared to the classical proportional–integral (PI) controller, commonly applied to control such sort of motors. The proposed SRM-adaptive feedforward control (AFC) controller is able to recover the speed of operation faster than a classical approach, when a feedforward action is not taken into account.

References

1.
Takeno
,
M.
,
Ogasawara
,
S.
,
Chiba
,
A.
,
Takemoto
,
M.
, and
Hoshi
,
N.
,
2011
, “
Power and Efficiency Measurements and Design Improvement of a 50kW Switched Reluctance Motor for Hybrid Electric Vehicles
,” IEEE Energy Conversion Congress and Exposition (
ECCE
), Phoenix, AZ, Sept. 17–22, pp.
1495
1501
.
2.
Bilgin
,
B.
,
Emadi
,
A.
, and
Krishnamurthy
,
M.
,
2013
, “
Comprehensive Evaluation of the Dynamic Performance of a 6/10 SRM for Traction Application in PHEVs
,”
IEEE Trans. Ind. Electron.
,
60
(
7
), pp.
2564
2575
.
3.
Yang
,
Z.
,
Shang
,
F.
,
Brown
,
I. P.
, and
Krishnamurthy
,
M.
,
2015
, “
Comparative Study of Interior Permanent Magnet, Induction, and Switched Reluctance Motor Drives for EV and HEV Applications
,”
IEEE Trans. Transp. Electrification
,
1
(
3
), pp.
245
254
.
4.
Krishnamurthy
,
M.
,
Edrington
,
C. S.
,
Emadi
,
A.
,
Asadi
,
P.
,
Ehsani
,
M.
, and
Fahimi
,
B.
,
2006
, “
Making the Case for Applications of Switched Reluctance Motor Technology in Automotive Products
,”
IEEE Trans. Power Electron.
,
21
(
3
), pp.
659
675
.
5.
Nashed
,
M. N. F.
,
2010
, “
Variable Angle Adjustable-High Speed Control With PI for SRM
,” World Automation Congress (
WAC
), Kobe, Japan, Sept. 19–23, pp.
1
6
.http://ieeexplore.ieee.org/document/5665439/
6.
Silva
,
W. A.
,
Reis
,
L. L. N.
,
Torrrico
,
B. C.
,
Almeida
,
N. D. C.
,
Silva
,
W. A.
,
Reis
,
L. L. N.
,
Torrrico
,
B. C.
, and
Almeida
,
N. D. C.
,
2013
, “
Speed Control in Switched Reluctance Motor Based on Generalized Predictive Control
,”
Brazilian Power Electronics Conference
(
COBEP
), Gramado, Brazil, Oct. 27–31, pp.
903
908
.
7.
Hannoun
,
H.
,
Hilairet
,
M.
, and
Marchand
,
C.
,
2010
, “
Design of an SRM Speed Control Strategy for a Wide Range of Operating Speeds
,”
IEEE Trans. Ind. Electron.
,
57
(
9
), pp.
2911
2921
.
8.
Almeida
,
R. N. C.
,
Correia
,
W. B.
,
Silva
,
W. A.
,
Pinto
,
V. P.
,
Almeida
,
R. N. C.
,
Correia
,
W. B.
,
Silva
,
W. A.
, and
Pinto
,
V. P.
,
2013
, “
A LMI/MPC Embedded Controller Applied to a Switched Reluctance Machine
,”
Brazilian Power Electronics Conference
(
COBEP
), Gramado, Brazil, Oct. 27–31, pp.
363
367
.
9.
Chen
,
H.
,
Jiang
,
J.
,
Zhang
,
C.
, and
Xie
,
G.
,
2000
, “
Analysis of the Four-Phase Switched Reluctance Motor Drive Under the Lacking One Phase Fault Condition
,”
IEEE Asia-Pacific Conference on Circuits and Systems
(
APCCAS
), Tianjin, China, Dec. 4–6, pp.
304
308
.
10.
Ding
,
W.
,
Liu
,
Y.
,
Ze
,
Q.
,
Hu
,
Y.
, and
Liu
,
X.
,
2014
, “
Analysis and Experimental Verification of Fault-Tolerant Performance of a Mutually Coupled Dual-Channel SRM Drive Under Open-Circuits
,”
Ninth International Conference on Ecological Vehicles and Renewable Energies
(
EVER
), Monte-Carlo, Monaco, Mar. 25–27, pp.
1
8
.
11.
Mecrow
,
B. C.
,
Jack
,
A. G.
,
Atkinson
,
D. J.
,
Green
,
S. R.
,
Atkinson
,
G. J.
,
King
,
A.
, and
Green
,
B.
,
2004
, “
Design and Testing of a Four-Phase Fault-Tolerant Permanent-Magnet Machine for an Engine Fuel Pump
,”
IEEE Trans. Energy Convers.
,
19
(
4
), pp.
671
678
.
12.
Sanchez
,
J. A.
,
Andrada
,
P.
,
Blanqué
,
B.
,
Torrent
,
M.
, and
Perat
,
J. I.
,
2005
, “
Post-Fault Performance of a Fault-Tolerant Switched Reluctance Motor Drive
,”
European Conference on Power Electronics and Applications
(
EPE
), Dresden, Germany, Sept. 11–14, pp.
1
8
.
13.
Chen
,
H.
, and
Shao
,
Z.
,
2004
, “
Fault Tolerant Control for Switched Reluctance Machine System
,”
30th Annual Conference of IEEE Industrial Electronics Society
(
IECON
), Busan, South Korea, Nov. 2–6, pp.
2526
2529
.
14.
Dubravka
,
P.
,
Rafajdus
,
P.
,
Makys
,
P.
,
Peniak
,
A.
, and
Hrabovcova
,
V.
,
2014
, “
Design of Fault Tolerant Control Technique for SRM Drive
,”
16th European Conference on Power Electronics and Applications
(
EPE-ECCE Europe
), Lappeenranta, Finland, Aug. 26–28, pp.
1
8
.
15.
Ze
,
Q.
,
Kou
,
P.
,
Liang
,
D.
, and
Liang
,
Z.
,
2014
, “
Fault-Tolerant Performances of Switched Reluctance Machine and Doubly Salient Permanent Magnet Machine in Starter/Generator System
,”
17th International Conference on Electrical Machines and Systems
(
ICEMS
), pp.
3417
3423
.
16.
Gameiro
,
N. S.
,
Cardoso
,
A. J. M.
, and
Member
,
S.
,
2012
, “
A New Method for Power Converter Fault Diagnosis in SRM Drives
,”
IEEE Transac. Indus. Appl.
,
48
(
2
), pp.
653
662
.
17.
Gopalakrishnan
,
S.
,
Omekanda
,
A. M.
, and
Lequesne
,
B.
,
2005
, “
Classification and Remediation of Electrical Faults in the Switched Reluctance Drive
,” Industry Applications Conference, Fortieth IAS Annual Meeting, Hong Kong, China, Oct. 2–6.
18.
Silva
,
W. A.
,
Reis
,
L. L. N.
,
Almeida
,
N. D. C.
,
Torrrico
,
B. C.
, and
Daher
,
S.
,
2012
, “
Speed and Current Control in Switched Reluctance Motor Based on PID and Generalized Predictive Control
,”
10th IEEE/IAS International Conference on Industry Applications
(
INDUSCON
), Fortaleza, Brazil, Nov. 5–6, pp.
1
6
.http://www.cricte2004.eletrica.ufpr.br/anais/induscon/2012/Data/iREP1892.pdf
19.
Clarke
,
D. W.
,
Mohtadi
,
C.
, and
Tuffs
,
P. S.
,
1987
, “
Generalized Predictive Control—Part I. The Basic Algorithm
,”
Autom.
,
23
(
2
), pp.
137
148
.
20.
Torrico
,
B. C.
,
Almeida
,
R. N. d. C.
,
dos Reis
,
L. L. N.
,
Silva
,
W. A.
, and
Pontes
,
R. S. T.
,
2014
, “
Robust Control Based on Generalized Predictive Control Applied to Switched Reluctance Motor Current Loop
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
3
), p.
031021
.
21.
Larsson
,
P.-O.
, and
Hagglund
,
T.
,
2011
, “
Control Signal Constraints and Filter Order Selection for PI and PID Controllers
,”
American Control Conference
(
ACC
), San Francisco, CA, June 29–July 1, pp.
4994
4999
.
22.
Skogestad
,
S.
, and
Postlethwaite
,
I.
,
1996
,
Multivariable Feedback Control: Analysis and Design
,
Wiley
,
Hoboken, NJ
.
23.
Correia
,
W. B.
,
de Carvalho Almeida
,
R. N.
,
Silva
,
W. A.
,
Torrico
,
B. C.
,
Pinto
,
V. P.
, and
dos Reis
,
L. L. N.
,
2016
, “
The T-Polynomial Approach for LQG Control Applied to a Switched Reluctance Motor (SRM)
,”
Przegla̧d Elektrotechniczny
,
1
(
2
), pp.
163
169
.
24.
Åström
,
K. J.
, and
Hägglund
,
T.
,
1995
,
PID Controllers: Theory, Design and Tuning
, 2nd ed.,
Instrument Society of America
,
Pittsburgh, PA
.
25.
Skogestad
,
S.
,
2003
, “
Single Analytic Rules for Model Reduction and PID Controller Tuning
,”
J. Process Control
,
13
(
4
), pp.
291
309
.
26.
Liu
,
C.
,
Huo
,
Y.
,
Zhang
,
X.
,
Liu
,
J.
, and
Chen
,
H.
,
2013
, “
Fuzzy Embed Into PI Control Algorithm of Switched Reluctance Motor
,”
IEEE International Conference on Information and Automation
(
ICIA
), Yinchuan, China, Aug. 26–28, pp.
505
509
.
27.
Banerjee
,
R.
,
Sengupta
,
M.
, and
Dalapati
,
S.
,
2014
, “
Design and Implementation of Current Mode Control in a Switched Reluctance Drive
,”
International Conference on Power Electronics, Drives and Energy Systems
(
PEDES
), Mumbai, India, Dec. 16–19, pp.
2
6
.
You do not currently have access to this content.