Transient stability is the key problem for reliable and secure planning under the new deregulated market conditions. By using immersion and invariance (I&I) method, a nonlinear coordinated generator excitation and steam-valve controller is designed to improve transient stability of power systems. The proposed coordinated I&I controller can assure power angle stability, voltage, and frequency regulations, when a large disturbance occurs on the transmission line or a small perturbation to mechanical power. Compared with the Lyapunov method, the proposed method does not need to construct a Lyapunov energy function. Some numerical simulations are used to validate the proposed controller. Simulation results show that the nonlinear coordinated I&I controller has better control performance than the existing coordinated passivation controller (CPC).

References

1.
Lu
,
Q.
, and
Sun
,
Y.
,
2008
,
Nonlinear Control of Power Systems
,
Tsinghua Press
,
Beijing, China
.
2.
Sun
,
Y.
,
Jiao
,
X.
, and
Shen
,
T.
,
2007
,
Nonlinear Robust Control of Power Systems
,
Tsinghua University Press
,
Beijing, China
.
3.
Kundur
,
P.
,
2001
,
Power System Stability and Control
,
McGraw-Hill
,
New York
.
4.
Galaz
,
M.
,
Ortega
,
R.
,
Bazanella
,
S. A.
, and Stankovic, A. M.,
2003
, “
An Energy-Shaping Approach to Excitation Control of Synchronous Generators
,”
Automatica
,
39
(
1
), pp.
111
119
.
5.
Sun
,
L.
, and
Zhao
,
J.
,
2010
, “
A New Adaptive Backstepping Design of Turbine Main Steam Valve Control
,”
J. Control Theory Appl.
,
8
(
4
), pp.
425
428
.
6.
Ji, H.-B., Chen, H., Xi, H.-S., and Wang, B.,
2006
, “
Coordinated Passivation Techniques for the Dual-Excited and Steam-Valving Control of Synchronous Generators
,”
IEE Proc. Control Theory Appl.
,
153
(
1
), pp.
69
73
.
7.
Wang
,
B.
, and
Mao
,
Z.
,
2009
, “
Nonlinear Variable Structure Excitation and Steam-Valving Controllers for Power System Stability
,”
J. Control Theory Appl.
,
7
(
1
), pp.
97
102
.
8.
Guo
,
Y.
,
Hill
,
D. J.
, and
Wang
,
Y.
,
2000
, “
Nonlinear Decentralized Control of Large-Scale Power Systems
,”
Automatica
,
36
(
9
), pp.
1275
1289
.
9.
Xu
,
S.
, and
Hou
,
X.
,
2012
, “
A Family of Robust Adaptive Excitation Controllers for Synchronous Generators With Steam Valve Via Hamiltonian Function Method
,”
J. Control Theory Appl.
,
10
(
1
), pp.
11
18
.
10.
Jiang
,
N.
,
Liu
,
T.
,
Li
,
S. T.
, and
Dong
,
X. J.
,
2013
, “
Whole-Range Nonlinear Large Disturbance Attenuation Controller Design for Turbo Generator Steam Valve Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
1
), p.
011009
.
11.
Huang
,
R.
,
Zhang
,
J. H.
, and
Lin
,
Z. W.
,
2017
, “
Decentralized Adaptive Controller Design for Large-Scale Power Systems
,”
Automatica
,
79
(
5
), pp.
93
100
.
12.
Fombu
,
A. M.
,
Kenne
,
G.
,
de Dieu Nguimfack-Ndongmo
,
J.
, and
Kuate-Fochie
,
R.
,
2016
, “
Decentralized Nonlinear Coordinated Excitation and Steam Valve Adaptive Control for Multi-Machine Power Systems
,”
Int. J. Electr. Power Energy Syst.
,
75
, pp.
117
126
.
13.
Astolfi
,
A.
, and
Ortega
,
R.
,
2003
, “
Immersion and Invariance: A New Tool for Stabilization and Adaptive Control of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
48
(
4
), pp.
590
606
.
14.
Astolfi
,
A.
,
Karagiannis
,
D.
, and
Ortega
,
R.
,
2008
,
Nonlinear and Adaptive Control With Applications
,
Springer
,
London
.
15.
Li
,
S. T.
,
Liu
,
X. M.
, and
Dong
,
X. J.
,
2015
, “
Non-Certainty Equivalent Practically Adaptive Control for High-Order Lower Triangular Systems
,”
IMA J. Math. Control Inf.
,
32
(
4
), pp.
809
822
.
16.
Mattioni
,
M.
,
Monaco
,
S.
, and
Normand-Cyrot
,
D.
,
2017
, “
Immersion and Invariance Stabilization of Strict-Feedback Dynamics Under Sampling
,”
Automatica
,
76
(
2
), pp.
78
86
.
17.
Monaco
,
S.
,
Normand-Cyrot
,
D.
, and
Mattioni
,
M.
,
2017
, “
Sampled-Data Stabilization of Nonlinear Dynamics With Input Delays Through Immersion and Invariance
,”
IEEE Trans. Autom. Control
,
62
(
5
), pp.
2561
2567
.
18.
Wang
,
L.
,
Ortega
,
R.
,
Su
,
H. Y.
, and
Liu
,
Z. T.
,
2015
, “
Stabilization of Nonlinear Systems Nonlinearly Depending on Fast Time-Varying Parameters: An Immersion and Invariance Approach
,”
IEEE Trans. Autom. Control
,
60
(
2
), pp.
559
564
.
19.
Wang
,
L.
,
Forni
,
F.
,
Ortega
,
R.
,
Liu
,
Z. T.
, and
Su
,
H. Y.
,
2017
, “
Immersion and Invariance Stabilization of Nonlinear Systems Via Virtual and Horizontal Contraction
,”
IEEE Trans. Autom. Control
,
62
(
8
), pp.
4017
4022
.
20.
Dib
,
W.
,
Ortega
,
R.
, and
Hill
,
D.
,
2014
, “
Transient Stability Enhancement of Multi-Machine Power Systems: Synchronization Via Immersion of a Pendular System
,”
Asian J. Control
,
16
(
1
), pp.
50
58
.
21.
Kanchanaharuthai
,
A.
,
2014
, “
Immersion and Invariance-Based Nonlinear Coordinated Control for Generator Excitation and Static Synchronous Compensator of Power Systems
,”
Electric Power Compon. Syst.
,
42
(
10
), pp.
1004
1015
.
22.
Li
,
S.
,
Liu
,
X.
, and
Zhang
,
H.
,
2014
, “
A Constructive Solution for Adaptive Stabilization of TCSC Via Immersion and Invariance
,”
Int. J. Innovative Comput., Inf. Control
,
10
(
5
), pp.
1923
1929
.http://www.ijicic.org/ijicic-13-12019.pdf
You do not currently have access to this content.