In this work, a nonlinear hybrid state space model of a complete spark ignition (SI) gasoline engine system from throttle to muffler is developed using the mass and energy balance equations. It provides within-cycle dynamics of all the engine variables such as temperature, pressure, and mass of individual gas species in the intake manifold (IM), cylinder, and exhaust manifold (EM). The inputs to the model are the same as that commonly exercised by the engine control unit (ECU), and its outputs correspond to available engine sensors. It uses generally known engine parameters, does not require extensive engine maps found in mean value models (MVMs), and requires minimal experimentation for tuning. It is demonstrated that the model is able to capture a variety of engine faults by suitable parameterization. The state space modeling is parsimonious in having the minimum number of integrators in the model by appropriate choice of state. It leads to great computational efficiency due to the possibility of deriving the Jacobian expressions analytically in applications such as on-board state estimation. The model was validated both with data from an industry standard engine simulation and those from an actual engine after relevant modifications. For the test engine, the engine speed and crank angle were extracted from the crank position sensor signal. The model was seen to match the true values of engine variables both in simulation and experiments.

References

1.
Jung
,
D.
, and
Assanis
,
D.
,
2001
, “
Multi-Zone DI Diesel Spray Combustion Model for Cycle Simulation Studies of Engine Performance and Emissions
,”
SAE
Paper No. 2001-01-1246.
2.
Liang
,
L.
, and
Reitz
,
R.
,
2006
, “
Spark Ignition Engine Combustion Modeling Using a Level Set Method With Detailed Chemistry
,”
SAE
Paper No. 2006-01-0243.
3.
Torres
,
D. J.
, and
Trujillo
,
M. F.
,
2006
, “
KIVA-4: An Unstructured ALE Code for Compressible Gas Flow With Sprays
,”
J. Comput. Phys.
,
219
(
2
), pp.
943
975
.
4.
Hendricks
,
E.
, and
Sorenson
,
S.
,
1990
, “
Mean Value Modelling of Spark Ignition Engines
,”
SAE
Paper No. 900616.
5.
Fons
,
M.
,
Muller
,
M.
,
Chevalier
,
A.
,
Vigild
,
C.
,
Hendricks
,
E.
, and
Sorenson
,
S. C.
,
1999
, “
Mean Value Engine Modelling of an SI Engine With EGR
,”
SAE
Paper No. 1999-01-0909.
6.
Eriksson
,
L.
,
Nielsen
,
L.
,
Brugård
,
J.
,
Bergström
,
J.
,
Pettersson
,
F.
, and
Andersson
,
P.
,
2002
, “
Modeling of a Turbocharged SI Engine
,”
Annu. Rev. Control
,
26
(
1
), pp.
129
137
.
7.
Eriksson
,
L.
,
2007
, “
Modeling and Control of Turbocharged SI and DI Engines
,”
Oil Gas Sci. Technol.
,
62
(
4
), pp.
523
538
.
8.
Balluchi
,
A.
,
Benvenuti
,
L.
,
Di Benedetto
,
M. D.
,
Pinello
,
C.
, and
Sangiovanni-Vincentelli
,
A. L.
,
2000
, “
Automotive Engine Control and Hybrid Systems: Challenges and Opportunities
,”
Proc. IEEE
,
88
(
7
), pp.
888
912
.
9.
Balluchi
,
A.
,
Benvenuti
,
L.
,
Di Benedetto
,
M. D.
,
Miconi
,
G. M.
,
Pozzi
,
U.
,
Villa
,
T.
,
Wong-Toi
,
H.
, and
Sangiovanni-Vincentelli
,
A. L.
,
2000
, “
Maximal Safe Set Computation for Idle Speed Control of an Automotive Engine
,”
Hybrid Systems: Computation and Control
, Vol.
1790
,
Springer
,
Berlin
, pp.
32
44
.
10.
Nyberg
,
M.
,
2002
, “
Model-Based Diagnosis of an Automotive Engine Using Several Types of Fault Models
,”
IEEE Trans. Control Syst. Technol.
,
10
(
5
), pp.
679
689
.
11.
Nyberg
,
M.
, and
Stutte
,
T.
,
2004
, “
Model Based Diagnosis of the Air Path of an Automotive Diesel Engine
,”
Control Eng. Pract.
,
12
(
5
), pp.
513
525
.
12.
Rizvi
,
M. A.
,
Bhatti
,
A. I.
, and
Butt
,
Q. R.
,
2011
, “
Hybrid Model of the Gasoline Engine for Misfire Detection
,”
IEEE Trans. Ind. Electron.
,
58
(
8
), pp.
3680
3692
.
13.
Sengupta
,
S.
,
Mukhopadhyay
,
S.
,
Deb
,
A.
,
Pattada
,
K.
, and
De
,
S.
,
2011
, “
Hybrid Automata Modeling of SI Gasoline Engines Towards State Estimation for Fault Diagnosis
,”
SAE Int. J. Engines
,
5
(
3
), pp.
759
781
.
14.
Franchek
,
M. A.
,
Buehler
,
P. J.
, and
Makki
,
I.
,
2006
, “
Intake Air Path Diagnostics for Internal Combustion Engines
,”
ASME J. Dyn. Syst. Meas. Control
,
129
(
1
), pp.
32
40
.
15.
Schilling
,
A.
,
Amstutz
,
A.
, and
Guzzella
,
L.
,
2008
, “
Model-Based Detection and Isolation of Faults Due to Ageing in the Air and Fuel Paths of Common-Rail Direct Injection Diesel Engines Equipped With a λ and a Nitrogen Oxides Sensor
,”
Proc. Inst. Mech. Eng., Part D
,
222
(
1
), pp.
101
117
.
16.
Andersson
,
P.
, and
Eriksson
,
L.
,
2002
, “
Detection of Exhaust Manifold Leaks on a Turbocharged SI-Engine With Wastegate
,”
SAE
Paper No. 2002-01-0844.
17.
Shiao
,
Y.
, and
Moskwa
,
J. J.
,
1995
, “
Cylinder Pressure and Combustion Heat Release Estimation for SI Engine Diagnostics Using Nonlinear Sliding Observers
,”
IEEE Trans. Control Syst. Technol.
,
3
(
1
), pp.
70
78
.
18.
Karlsson
,
J.
, and
Fredriksson
,
J.
,
1999
, “
Cylinder-by-Cylinder Engine Models Vs Mean Value Engine Models for Use in Powertrain Control Applications
,”
SAE
Paper No. 1999-01-0906.
19.
Casoli
,
P.
,
Gambarotta
,
A.
,
Pompini
,
N.
,
Caiazzo
,
U.
,
Lanfranco
,
E.
, and
Palmisano
,
A.
,
2014
, “
Development and Validation of a ‘Crank-Angle’ Model of an Automotive Turbocharged Engine for HiL Applications
,”
Energy Procedia
,
45
, pp.
839
848
.
20.
Guzzella
,
L.
, and
Onder
,
C.
,
2009
,
Introduction to Modeling and Control of Internal Combustion Engine Systems
,
Springer
,
Berlin
.
21.
Heywood
,
J. B.
,
1998
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
22.
Felder
,
R. M.
, and
Rousseau
,
R. W.
,
1986
,
Elementary Principles of Chemical Processes
,
Wiley
,
New York
.
23.
Annand
,
W. J. D.
,
1963
, “
Heat Transfer in the Cylinders of Reciprocating Internal Combustion Engines
,”
Proc. Inst. Mech. Eng.
,
177
(
1
), pp.
973
996
.
24.
Lumley
,
J. L.
,
1999
,
Engines: An Introduction
,
Cambridge University Press
,
Cambridge, UK
.
25.
Vasu
,
J.
,
Deb
,
A. K.
,
Mukhopadhyay
,
S.
, and
Pattada
,
K.
,
2011
, “
Development and Validation of an MVEM from an SI-Engine Based WCCM
,”
International Conference on Modelling, Identification and Control
(
ICMIC
), Shanghai, China, June 26–29, pp.
52
57
.
You do not currently have access to this content.