In many haptic applications, producing a sharp feeling of impact is crucial for high-fidelity force feedback rendering of virtual objects (VOs). Although suitable for rendering collision-rich haptic interactions, impulse-based methods are rarely used in a pure form. Instead, they are combined with penalty-based elements in different forms such as virtual couplings (VCs) and hybridization. In this paper, we first propose the direct impulse-based paradigm for rendering haptic contacts using a new sampled-data interpretation of the impact problem. Then, we cast this interpretation into a systematic framework entitled the generalized contact controller (GCC). This enables us to implement different contact rendering methods as controllers and to improve them by appropriating a wide array of analysis and design tools developed in the control field. We specifically show how to apply position and velocity corrections to the purely impulse-based contact controller for enhancing its energy and sustained contact characteristics, and how to add an anti-windup compensator (AWC) for meeting actuation limits. These propositions are validated via simulation and experiments, as well as via human perception studies. Results show the promising aspects of the proposed impulse-based methods for generating a sharper unfiltered feeling of rigid-body contacts even at low sampling rates.

References

References
1.
Lötstedt
,
P.
,
1984
, “
Numerical Simulation of Time-Dependent Contact and Friction Problems in Rigid Body Mechanics
,”
SIAM J. Sci. Stat. Comput.
,
5
(
2
), pp.
370
393
.
2.
Pfeiffer
,
F.
, and
Glocker
,
C.
,
1996
,
Multibody Dynamics With Unilateral Contacts
, Vol.
9
,
Wiley
,
Weinheim, Germany
.
3.
Brogliato
,
B.
,
1999
,
Nonsmooth Mechanics: Models, Dynamics, and Control
,
Springer-Verlag
,
London
.
4.
Baraff
,
D.
,
1995
, “
Interactive Simulation of Solid Rigid Bodies
,”
IEEE Comput. Graphics Appl.
,
15
(
3
), pp.
63
75
.
5.
Constantinescu
,
D.
,
Salcudean
,
S.
, and
Croft
,
E.
,
2005
, “
Haptic Rendering of Rigid Contacts Using Impulsive and Penalty Forces
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
309
323
.
6.
Mohtat
,
A.
,
2014
, “
Fundamental Challenges in Haptics: Energy Consistency and High-Fidelity Contact Rendering
,”
Ph.D. thesis
, McGill University, Montreal, QC, Canada.http://digitool.library.mcgill.ca/R/?func=dbin-jump-full&object_id=130537&local_base=GEN01-MCG02
7.
Brach
,
R. M.
,
1991
,
Mechanical Impact Dynamics: Rigid Body Collisions
,
Wiley
,
New York
.
8.
Stronge
,
W. J.
,
2000
,
Impact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
9.
Chang
,
B.
, and
Colgate
,
J. E.
,
1997
, “
Real-Time Impulse-Based Simulation of Rigid Body Systems for Haptic Display
,”
ASME
International Mechanical Engineering Congress and Exhibition, Dallas, TX, Nov. 16–21, pp. 145–152.http://ai2-s2-pdfs.s3.amazonaws.com/692d/b87d44ed003439108475102b6dfe27704341.pdf
10.
Colgate
,
J.
,
Stanley
,
M.
, and
Brown
,
J.
,
1995
, “
Issues in the Haptic Display of Tool Use
,”
IEEE/RSJ International Conference on Intelligent Robots Systems
(
IROS
), Pittsburgh, PA, Aug. 5–9, pp.
140
145
.
11.
Brown
,
J.
, and
Colgate
,
J.
,
1998
, “
Minimum Mass for Haptic Display Simulations
,” ASME Dynamic Systems and Control Division, Anaheim, CA, Nov. 15–20, pp. 249–256.
12.
Mirtich
,
B.
, and
Canny
,
J.
,
1994
, “
Impulse-Based Dynamic Simulation
,”
Workshop on Algorithmic Foundations of Robotics
(
WAFR
), San Francisco, CA, pp. 407–418.https://people.eecs.berkeley.edu/~jfc/papers/94/ibds94.pdf
13.
Ellis
,
R.
,
Sarkar
,
N.
, and
Jenkins
,
M.
,
1997
, “
Numerical Methods for the Force Reflection of Contact
,”
ASME J. Dyn. Syst. Meas. Control
,
119
(
4
), pp.
768
774
.
14.
Mohtat
,
A.
, and
Kövecses
,
J.
,
2015
, “
High-Fidelity Rendering of Contact With Virtual Objects
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
7
), p.
071009
.
15.
Mohtat
,
A.
, and
Kövecses
,
J.
,
2015
, “
Direct Impulse-Based Rendering in Force Feedback Haptics
,”
IEEE World Haptics Conference
(
WHC
), Evanston, IL, June 22–26, pp.
313
320
.
16.
Gillespie
,
R.
, and
Cutkosky
,
M.
,
1996
, “
Stable User-Specific Haptic Rendering of the Virtual Wall
,”
ASME International Mechanical Engineering Congress and Exhibition
, Atlanta, GA, Nov. 17–22, pp. 397–406.https://www.researchgate.net/publication/228775906_Stable_user-specific_haptic_rendering_of_the_virtual_wall
17.
Wang
,
Q.
,
Chen
,
H.
,
Wu
,
W.
,
Qin
,
J.
, and
Heng
,
P.
,
2012
, “
Impulse-Based Rendering Methods for Haptic Simulation of Bone-Burring
,”
IEEE Trans. Haptics
,
5
(
4
), pp.
344
354
.
18.
Jarman
,
R.
,
Janko
,
B.
, and
Harwin
,
W. S.
,
2015
, “
Current Over-Stressing Small DC Motors to Evaluate Performance Limits of Electromechanical Actuators for Haptic Applications
,”
IEEE World Haptics Conference
(
WHC
), Evanston, IL, June 22–26, pp.
171
176
.
19.
Vander Poorten
,
E. B.
, and
Yokokohji
,
Y.
,
2007
, “
Feeling a Rigid Virtual World Through an Impulsive Haptic Display
,”
Adv. Rob.
,
21
(
12
), pp.
1411
1440
.http://www.tandfonline.com/doi/abs/10.1163/156855307781746115
20.
Kim
,
H. W.
,
Lee
,
J. H.
,
Yi
,
B.-J.
, and
Suh
,
I. H.
,
2004
, “
Singularity-Free Load Distribution Algorithms for a 6 DOF Parallel Haptic Device
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), New Orleans, LA, Apr. 26-May 1, pp. 298–304.
21.
Saafi
,
H.
,
Laribi
,
M. A.
, and
Zeghloul
,
S.
,
2015
, “
Redundantly Actuated 3-RRR Spherical Parallel Manipulator Used as a Haptic Device: Improving Dexterity and Eliminating Singularity
,”
Robotica
,
33
(
5
), pp.
1113
1130
.
22.
Janabi-Sharifi
,
F.
,
Hayward
,
V.
, and
Chen
,
C.
,
2000
, “
Discrete-Time Adaptive Windowing for Velocity Estimation
,”
IEEE Trans. Control Syst. Technol.
,
8
(
6
), pp.
1003
1009
.
23.
Naghshineh
,
M.
, and
Keshmiri
,
M.
,
2004
, “
Actuator Saturation Avoidance in Overactuated Systems
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Sendai, Japan, Sept. 28-Oct. 2, pp.
3613
3618
.
24.
Vermillion
,
C.
,
Sun
,
J.
, and
Butts
,
K.
,
2007
, “
Model Predictive Control Allocation for Overactuated Systems-Stability and Performance
,”
46th IEEE Conference on Decision and Control
(
CDC
), New Orleans, LA, Dec. 12–14.
25.
Lawrence
,
D. A.
,
1993
, “
Stability and Transparency in Bilateral Teleoperation
,”
IEEE Trans. Rob. Autom.
,
9
(
5
), pp.
624
637
.
26.
Chawda
,
V.
, and
O'Malley
,
M.
,
2012
, “
On the Performance of Passivity-Based Control of Haptic Displays Employing Levant's Differentiator for Velocity Estimation
,”
IEEE Haptics Symposium
, Vancouver, BC, Canada, Mar. 4–7, pp. 415–419.
27.
Ghaffari-Toiserkan
,
K.
,
Kovecses
,
J.
, and
Karam
,
P.
,
2011
, “
Adaptive Frequency Differentiation: An Approach to Increase the Transparency and Performance of Haptic Devices
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
1360
1367
.
28.
Cuijpers
,
P. J. L.
,
Reniers
,
M. A.
, and
Engels
,
A. G.
,
2001
, “
Beyond Zeno Behaviour
,” Technische Universiteit Eindhoven, Eindhoven, The Netherlands, Technical Report No.
01/04
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.638.3281&rep=rep1&type=pdf
29.
Herrmann
,
G.
,
Turner
,
M. C.
, and
Postlethwaite
,
I.
,
2006
, “
Discrete-Time and Sampled-Data Anti-Windup Synthesis: Stability and Performance
,”
Int. J. Syst. Sci.
,
37
(
2
), pp.
91
113
.
30.
Leu
,
M. C.
,
Yang
,
S.
, and
Meyer
,
A. U.
,
1993
, “
Anti-Windup Control of Second-Order Plants With Saturation Nonlinearity
,”
ASME J. Dyn. Syst. Meas. Control
,
115
(
4
), pp.
715
720
.
31.
Moreno
,
J.
,
Baños
,
A.
, and
Berenguel
,
M.
,
2010
, “
A QFT Framework for Antiwindup Control Systems Design
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
2
), p.
021012
.
32.
Hwang
,
J. D.
,
Williams
,
M. D.
, and
Niemeyer
,
G.
,
2004
, “
Toward Event-Based Haptics: Rendering Contact Using Open-Loop Force Pulses
,”
12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
(
HAPTICs
), Chicago, IL, Mar. 27–28, pp.
24
31
.
33.
Lawrence
,
D. A.
,
Pao
,
L. Y.
,
Dougherty
,
A. M.
,
Salada
,
M. A.
, and
Pavlou
,
Y.
,
2000
, “
Rate-Hardness: A New Performance Metric for Haptic Interfaces
,”
IEEE Trans. Rob. Autom.
,
16
(
4
), pp.
357
371
.
34.
Dominjon
,
L.
,
Lecuyer
,
A.
,
Burkhardt
,
J.-M.
,
Andrade-Barroso
,
G.
, and
Richir
,
S.
,
2005
, “
The ‘Bubble’ Technique: Interacting With Large Virtual Environments Using Haptic Devices With Limited Workspace
,”
First Joint Eurohaptics Conference and World Haptics Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
(
WHC
), Pisa, Italy, Mar. 18–20, pp.
639
640
.
35.
Gallacher
,
C.
,
Harrison
,
J.
, and
Kövecses
,
J.
,
2015
, “
Characterizing Device Dynamics for Haptic Manipulation and Navigation
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
3689
3695
.
36.
Mohtat
,
A.
,
Gallacher
,
C.
, and
Kovecses
,
J.
,
2014
, “
High-Fidelity Contact Rendering: Feel Realistic Forces From Virtual Objects!
,”
IEEE Haptics Symposium
(
HAPTICS
), Houston, TX, Feb. 23–26, p. 1.
37.
Mohtat
,
A.
,
Gallacher
,
C.
, and
Kovecses
,
J.
,
2014
, “
Developing Immersive Virtual Worlds Through Realistic Contact Rendering and Improved Transparency
,” 9th International Conference (
EuroHaptics
), Versailles, France, June 24–26, pp. 472–474.
You do not currently have access to this content.