This paper is concerned with the filtering problem in continuous time. Three algorithmic solution approaches for this problem are reviewed: (i) the classical Kalman–Bucy filter, which provides an exact solution for the linear Gaussian problem; (ii) the ensemble Kalman–Bucy filter (EnKBF), which is an approximate filter and represents an extension of the Kalman–Bucy filter to nonlinear problems; and (iii) the feedback particle filter (FPF), which represents an extension of the EnKBF and furthermore provides for a consistent solution in the general nonlinear, non-Gaussian case. The common feature of the three algorithms is the gain times error formula to implement the update step (to account for conditioning due to the observations) in the filter. In contrast to the commonly used sequential Monte Carlo methods, the EnKBF and FPF avoid the resampling of the particles in the importance sampling update step. Moreover, the feedback control structure provides for error correction potentially leading to smaller simulation variance and improved stability properties. The paper also discusses the issue of nonuniqueness of the filter update formula and formulates a novel approximation algorithm based on ideas from optimal transport and coupling of measures. Performance of this and other algorithms is illustrated for a numerical example.

References

1.
Kalnay
,
E.
,
2002
,
Atmospheric Modeling, Data Assimilation and Predictability
,
Cambridge University Press
,
Cambridge, UK
.
2.
Oliver
,
D.
,
Reynolds
,
A.
, and
Liu
,
N.
,
2008
,
Inverse Theory for Petroleum Reservoir Characterization and History Matching
,
Cambridge University Press
,
Cambridge, UK
.
3.
Kitanidis
,
P.
,
1995
, “
Quasi-Linear Geostatistical Theory for Inversion
,”
Water Resour. Res.
,
31
(
10
), pp.
2411
2419
.
4.
Burgers
,
G.
,
van Leeuwen
,
P.
, and
Evensen
,
G.
,
1998
, “
On the Analysis Scheme in the Ensemble Kalman Filter
,”
Mon. Weather Rev.
,
126
(
6
), pp.
1719
1724
.
5.
Houtekamer
,
P.
, and
Mitchell
,
H.
,
2001
, “
A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation
,”
Mon. Weather Rev.
,
129
(
1
), pp.
123
136
.
6.
Julier
,
S. J.
, and
Uhlmann
,
J. K.
,
1997
, “
A New Extension of the Kalman Filter to Nonlinear Systems
,”
Proc. SPIE
,
3068
, pp.
182
193
.
7.
Reich
,
S.
, and
Cotter
,
C.
,
2015
,
Probabilistic Forecasting and Bayesian Data Assimilation
,
Cambridge University Press
,
Cambridge, UK
.
8.
Daum
,
F.
,
Huang
,
J.
, and
Noushin
,
A.
,
2010
, “
Exact Particle Flow for Nonlinear Filters
,”
Proc. SPIE
,
7697
, p.
769704
.
9.
Daum
,
F.
,
Huang
,
J.
, and
Noushin
,
A.
,
2017
, “
Generalized Gromov Method for Stochastic Particle Flow Filters
,”
Proc. SPIE
,
10200
, p.
102000I
.
10.
Ma
,
R.
, and
Coleman
,
T. P.
,
2011
, “
Generalizing the Posterior Matching Scheme to Higher Dimensions Via Optimal Transportation
,”
IEEE
49th Annual Allerton Conference on Communication, Control, and Computing
, Monticello, IL, Sept. 28–30, pp.
96
102
.
11.
El Moselhy
,
T. A.
, and
Marzouk
,
Y. M.
,
2012
, “
Bayesian Inference With Optimal Maps
,”
J. Comput. Phys.
,
231
(
23
), pp.
7815
7850
.
12.
Heng
,
J.
,
Doucet
,
A.
, and
Pokern
,
Y.
,
2015
, “
Gibbs Flow for Approximate Transport With Applications to Bayesian Computation
,” e-print
arXiv:1509.08787
.https://arxiv.org/abs/1509.08787
13.
Yang
,
T.
,
Blom
,
H.
, and
Mehta
,
P. G.
,
2014
, “
The Continuous-Discrete Time Feedback Particle Filter
,”
American Control Conference
(
ACC
), Portland, OR, June 4–6, pp.
648
653
.
14.
Crisan
,
D.
, and
Xiong
,
J.
,
2007
, “
Numerical Solutions for a Class of SPDEs Over Bounded Domains
,”
ESAIM Proc.
,
19
, pp.
121
125
.
15.
Crisan
,
D.
, and
Xiong
,
J.
,
2010
, “
Approximate McKean–Vlasov Representations for a Class of SPDEs
,”
Stochastics
,
82
(
1
), pp.
53
68
.
16.
Yang
,
T.
,
Mehta
,
P. G.
, and
Meyn
,
S. P.
,
2011
, “
Feedback Particle Filter With Mean-Field Coupling
,”
50th IEEE Conference on Decision and Control and European Control Conference
(
CDC-ECC
), Orlando, FL, Dec. 12–15, pp.
7909
7916
.
17.
Yang
,
T.
,
Mehta
,
P. G.
, and
Meyn
,
S. P.
,
2013
, “
Feedback Particle Filter
,”
IEEE Trans. Autom. Control
,
58
(
10
), pp.
2465
2480
.
18.
Blom
,
H. A. P.
,
2012
, “
The Continuous Time Roots of the Interacting Multiple Model Filter
,”
51st IEEE Conference on Decision and Control
(
CDC
), Maui, HI, Dec. 10–13, pp.
6015
6021
.
19.
Bar-Shalom
,
Y.
,
Daum
,
F.
, and
Huang
,
J.
,
2009
, “
The Probabilistic Data Association Filter
,”
IEEE Control Syst. Mag.
,
29
(
6
), pp.
82
100
.
20.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
35
45
.
21.
Law
,
K.
,
Stuart
,
A.
, and
Zygalakis
,
K.
,
2015
,
Data Assimilation: A Mathematical Introduction
,
Springer-Verlag
,
New York
.
22.
Reich
,
S.
,
2011
, “
A Dynamical Systems Framework for Intermittent Data Assimilation
,”
BIT Numer. Anal.
,
51
(
1
), pp.
235
249
.
23.
Bergemann
,
K.
, and
Reich
,
S.
,
2012
, “
An Ensemble Kalman-Bucy Filter for Continuous Data Assimilation
,”
Meteorol. Z.
,
21
(
3
), pp.
213
219
.
24.
de Wiljes
,
J.
,
Reich
,
S.
, and
Stannat
,
W.
,
2016
, “
Long-Time Stability and Accuracy of the Ensemble Kalman-Bucy Filter for Fully Observed Processes and Small Measurement Noise
,” University Potsdam, Potsdam, Germany,
Technical Report
.https://www.uni-potsdam.de/de/sfb1294/thema2/research-area-a/a02-long-time-stability-and-accuracy-of-ensemble-transform-filter-algorithms.html
25.
Del Moral
,
P.
,
Kurtzmann
,
A.
, and
Tugaut
,
J.
,
2016
, “
On the Stability and the Uniform Propagation of Chaos of Extended Ensemble Kalman-Bucy Filters
,” INRIA Bordeaux Research Center, Talence, France,
Technical Report
.https://hal.archives-ouvertes.fr/hal-01337716
26.
Kelly
,
D.
,
Law
,
K.
, and
Stuart
,
A.
,
2014
, “
Well-Posedness and Accuracy of the Ensemble Kalman Filter in Discrete and Continuous Time
,”
Nonlinearity
,
27
(
10
), p.
2579
.
27.
Kelly
,
D.
, and
Stuart
,
A. M.
,
2016
, “
Ergodicity and Accuracy of Optimal Particle Filters for Bayesian Data Assimilation
,” e-print
arXiv:1611.08761
.https://arxiv.org/abs/1611.08761
28.
Kelly
,
D.
,
Majda
,
A. J.
, and
Tong
,
X. T.
,
2015
, “
Concrete Ensemble Kalman Filters With Rigorous Catastrophic Filter Divergence
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
34
), pp.
10589
10594
.
29.
Oksendal
,
B.
,
2013
,
Stochastic Differential Equations: An Introduction With Applications
,
Springer Science & Business Media
,
Berlin
.
30.
Zhang
,
C.
,
Taghvaei
,
A.
, and
Mehta
,
P. G.
,
2016
, “
Feedback Particle Filter on Matrix Lie Groups
,”
American Control Conference
(
ACC
), Boston, MA, July 6–8, pp.
2723
2728
.
31.
Yang
,
T.
,
Laugesen
,
R. S.
,
Mehta
,
P. G.
, and
Meyn
,
S. P.
,
2016
, “
Multivariable Feedback Particle Filter
,”
Automatica
,
71
, pp.
10
23
.
32.
Villani
,
C.
,
2003
,
Topics in Optimal Transportation
, Vol.
58
,
American Mathematical Society
,
Providence, RI
.
33.
Evans
,
L. C.
,
1997
, “
Partial Differential Equations and Monge-Kantorovich Mass Transfer
,”
Current Developments in Mathematics
, Boston, MA, pp.
65
126
.
34.
Laugesen
,
R. S.
,
Mehta
,
P. G.
,
Meyn
,
S. P.
, and
Raginsky
,
M.
,
2015
, “
Poisson’s Equation in Nonlinear Filtering
,”
SIAM J. Control Optim.
,
53
(
1
), pp.
501
525
.
35.
Stano
,
P. M.
,
Tilton
,
A. K.
, and
Babuška
,
R.
,
2014
, “
Estimation of the Soil-Dependent Time-Varying Parameters of the Hopper Sedimentation Model: The FPF Versus the BPF
,”
Control Eng. Pract.
,
24
, pp.
67
78
.
36.
Tilton
,
A. K.
,
Ghiotto
,
S.
, and
Mehta
,
P. G.
,
2013
, “
A Comparative Study of Nonlinear Filtering Techniques
,”
16th International Conference on Information Fusion
(
FUSION
), Istanbul, Turkey, July 9–12, pp.
1827
1834
.http://ieeexplore.ieee.org/document/6641226/
37.
Berntorp
,
K.
,
2015
, “
Feedback Particle Filter: Application and Evaluation
,”
18th International Conference on Information Fusion
(
FUSION
), Washington, DC, July 6–9, pp. 1633–1640.http://ieeexplore.ieee.org/document/7266752/
38.
Berntorp
,
K.
, and
Grover
,
P.
,
2016
, “
Data-Driven Gain Computation in the Feedback Particle Filter
,”
American Control Conference
(
ACC
), Boston, MA, July 6–8, pp.
2711
2716
.
39.
Coifman
,
R. R.
, and
Lafon
,
S.
,
2006
, “
Diffusion Maps
,”
Appl. Comput. Harmonic Anal.
,
21
(
1
), pp.
5
30
.
40.
Hein
,
M.
,
Audibert
,
J.
, and
Luxburg
,
U.
,
2007
, “
Graph Laplacians and Their Convergence on Random Neighborhood Graphs
,”
J. Mach. Learn. Res.
,
8
, pp.
1325
1368
.http://www.jmlr.org/papers/volume8/hein07a/hein07a.pdf
41.
Taghvaei
,
A.
,
Mehta
,
P. G.
, and
Meyn
,
S. P.
,
2017
, “
Error Estimates for the Kernel Gain Function Approximation in the Feedback Particle Filter
,”
American Control Conference
(
ACC
), Seattle, WA, May 24–26, pp.
4576
4582
.
42.
Xiong
,
J.
,
2008
,
An Introduction to Stochastic Filtering Theory
(Oxford Graduate Texts in Mathematics), Vol.
18
,
Oxford University Press
,
Oxford, UK
.
You do not currently have access to this content.