Researchers often use mechanisms that consist of massless rods and concentrated masses in order to capture the dynamics of robotic locomotors. A kinematic prototyping tool that captures all possible locomotion modes of a given kinematic mechanism can be very useful in conceiving and designing such systems. Previously, we proposed a family of mechanisms that consist of two types of primitive building units: a single mass with a built-in revolute joint and a massless connection rod. This family starts from a single bouncing mass and progressively evolves into more complex generations. In this paper, we present a prototyping tool that generates all possible locomotion cycles of particle-based linear chain mechanisms. A new skip impact concept is introduced to describe the relative motion of the moving masses and the masses on the ground. Also, the paper represents a graphical user interface (GUI) that facilitates data input and the visualization of the locomotion modes.

References

References
1.
Tavakoli
,
A.
, and
Hurmuzlu
,
Y.
,
2013
, “
Robotic Locomotion of Three Generations of a Family Tree of Dynamical Systems—Part I: Passive Gait Patterns
,”
Nonlinear Dyn.
,
73
(
3
), pp.
1969
1989
.
2.
Tavakoli
,
A.
, and
Hurmuzlu
,
Y.
,
2013
, “
Robotic Locomotion of Three Generations of a Family Tree of Dynamical Systems—Part II: Impulsive Control of Gait Patterns
,”
Nonlinear Dyn.
,
73
(
3
), pp.
1991
2012
.
3.
Neville
,
A.
, and
Sanderson
,
A.
,
1996
, “
Tetrobot Family Tree: Modular Synthesis of Kinematic Structures for Parallel Robotics
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Osaka, Japan, Nov. 4–8, pp.
382
389
.
4.
Liljeback
,
P.
,
Pettersen
,
K. Y.
,
Stavdahl
,
O.
, and
Gravdahl
,
J. T.
,
2012
, “
Snake Robot Locomotion in Environments With Obstacles
,”
IEEE/ASME Trans. Mechatronics
,
17
(
6
), pp.
1158
1169
.
5.
Zhang
,
W. R.
,
1998
, “
Legged Robot Locomotion and Gymnastics
,”
IEEE Trans. Syst. Man Cybern. Part B
,
28
(
3
), pp.
357
375
.
6.
Saito
,
F.
,
Fukuda
,
T.
, and
Arai
,
F.
,
1994
, “
Swing and Locomotion Control for a Two-Link Brachiation Robot
,”
IEEE Control Syst.
,
14
(
1
), pp.
5
12
.
7.
Kamimura
,
A.
,
Murata
,
S.
,
Yoshida
,
E.
,
Kurokawa
,
H.
,
Tomita
,
K.
, and
Kokaji
,
S.
,
2001
, “
Self-Reconfigurable Modular Robot-Experiments on Reconfiguration and Locomotion
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Maui, HI, Oct. 29–Nov. 3, pp.
606
612
.
8.
Kurokawa
,
H.
,
Tomita
,
K.
,
Kamimura
,
A.
,
Kokaji
,
S.
,
Hasuo
,
T.
, and
Murata
,
S.
,
2008
, “
Distributed Self-Reconfiguration of M-Tran III Modular Robotic System
,”
Int. J. Rob. Res.
,
27
(
3–4
), pp.
373
386
.
9.
Murata
,
S.
, and
Kurokawa
,
H.
,
2007
, “
Self-Reconfigurable Robots
,”
IEEE Rob. Autom. Mag.
,
14
(
1
), pp.
71
78
.
10.
Murata
,
S.
,
Yoshida
,
E.
,
Kamimura
,
A.
,
Kurokawa
,
H.
,
Tomita
,
K.
, and
Kokaji
,
S.
,
2002
, “
M-Tran: Self-Reconfigurable Modular Robotic System
,”
IEEE/ASME Trans. Mechatronics
,
7
(
4
), pp.
431
441
.
11.
Dorbolo
,
S.
,
Volfson
,
D.
,
Tsimring
,
L.
, and
Kudrolli
,
A.
,
2005
, “
Dynamics of a Bouncing Dimer
,”
Phys. Rev. Lett.
,
95
(
4
), p.
044101
.
12.
Liu
,
C.
,
Zhao
,
Z.
, and
Brogliato
,
B.
,
2008
, “
Variable Structure Dynamics in a Bouncing Dimer
,” INRIA, Rocquencourt, France, Report No.
RR-6718
.
13.
Tavakoli
,
A.
, and
Hurmuzlu
,
Y.
,
2011
, “
A Hybrid of Impulsive and Continuous Control for Kneeless Bipedal Walking
,”
ASME
Paper No. DSCC2011-6125.
14.
Marghitu
,
D. B.
, and
Hurmuzlu
,
Y.
,
1995
, “
Three-Dimensional Rigid-Body Collisions With Multiple Contact Points
,”
ASME J. Appl. Mech.
,
62
(
3
), pp.
725
732
.
15.
Hurmuzlu
,
Y.
, and
Moskowitz
,
G. D.
,
1987
, “
Bipedal Locomotion Stabilized by Impact and Switching—Part I: Two- and Three-Dimensional, Three-Element Models
,”
Dyn. Stab. Syst.
,
2
(
2
), pp.
73
96
.
16.
Hurmuzlu
,
Y.
, and
Moskowitz
,
G. D.
,
1987
, “
Bipedal Locomotion Stabilized by Impact and Switching—Part II. Structural Stability Analysis of a Four-Element Bipedal Locomotion Model
,”
Dyn. Stab. Syst.
,
2
(
2
), pp.
97
112
.
17.
Hurmuzlu
,
Y.
, and
Marghitu
,
D. B.
,
1994
, “
Rigid Body Collisions of Planar Kinematic Chains With Multiple Contact Points
,”
Int. J. Rob. Res.
,
13
(
1
), pp.
82
92
.
18.
Leine
,
R. I.
,
Van Campen
,
D. H.
, and
Glocker
,
C. H.
,
2003
, “
Nonlinear Dynamics and Modeling of Various Wooden Toys With Impact and Friction
,”
J. Vib. Control
,
9
(
1–2
), pp.
25
78
.
19.
Payr
,
M.
, and
Glocker
,
C.
,
2005
, “
Oblique Frictional Impact of a Bar: Analysis and Comparison of Different Impact Laws
,”
Nonlinear Dyn.
,
41
(
4
), pp.
361
383
.
You do not currently have access to this content.