This paper focuses on the robust control problem for a class of linear uncertain systems by using frequency techniques. The controller/observer dynamics are analyzed using Lyapunov techniques, in terms of the state and state estimation error, for an uncertainty constrained over a specified range. A Popov-type criterion, a “circle criterion,” defined as the Popov frequency condition and the uncertainty circle, is formulated. It is proved that the closed-loop system is robustly stable if the Popov condition holds at all frequencies. The proposed method is validated against a robust controller for a balancing robot (BR).

References

References
1.
Lei
,
W. H.
,
Chou
,
J. H.
, and
Horng
,
I. R.
,
2001
, “
Robust Observer-Based Frequency-Shaping Optimal Vibration Control of Uncertain Flexible Linkage Mechanism
,”
Appl. Math. Modell.
,
25
(
11
), pp.
923
936
.
2.
Coelingh
,
H. J.
,
Schrijver
,
E.
,
de Vries
,
T. J. A.
, and
van Dick
,
J.
,
2000
, “
Design of Disturbance Observer for the Compensation of Low-Frequency Disturbances
,”
Fifth International Conference on Motion and Vibration Control
(
MOVIC
), Sydney, Australia, Dec. 4–8, pp.
75
80
.
3.
Zhong
,
Q. C.
, and
Rees
,
D.
,
2004
, “
Control of Uncertain LTI Systems Based on an Uncertainty and Disturbance Estimator
,”
ASME J. Dyn. Syst. Meas. Control
,
126
(
4
), pp.
905
910
.
4.
Yang
,
J.
,
Ding
,
Z.
,
Chen
,
W.-H.
, and
Li
,
S.
,
2016
, “
Output-Based Disturbance Rejection Control for Non-Linear Uncertain Systems With Unknown Frequency Disturbances Using an Observer Backstepping Approach
,”
IEEE Control Theory Appl.
,
10
(
9
), pp.
1052
1060
.
5.
Cloud
,
D. J.
,
2002
, “
A Frequency Response-Based Model Order Selection Criterion
,”
IEEE Trans. Autom. Control
,
33
(
6
), pp.
582
585
.
6.
Chong
,
M.
,
Postoyan
,
R.
,
Nesic
,
D.
, and
Kuhlman
,
L.
,
2012
, “
A Robust Circle Criterion Observer With Application to Neural Mass Models
,”
Automatica
,
48
(
11
), pp.
2986
2989
.
7.
Dey
,
S.
,
Ayalew
,
B.
, and
Pisu
,
P.
,
2015
, “
Nonlinear Adaptive Observer for a Lithium-Ion Battery Cell Based on Coupled Electrochemical–Thermal Model
,”
ASME J. Dyn. Sys. Meas. Control
,
137
(
11
), p.
111005
.
8.
Ning
,
J.
, and
Yan
,
F.
,
2015
, “
Robust Nonlinear Disturbance Observer Design for Estimation of Ammonia Storage Ratio in Selective Catalytic Reduction Systems
,”
ASME J. Dyn. Sys. Meas. Control
,
137
(
12
), p.
121012
.
9.
Feyel
,
P.
,
2013
,
Loop-Shaping Robust Control
,
Wiley
,
Hoboken, NJ
.
10.
Benabdallah
,
A.
, and
Hammami
,
M. A.
,
2006
, “
Circle and Popov Criterion for Output Feedback Stabilization of Uncertain Systems
,”
Nonlinear Anal.: Modell. Control
,
11
(
1
), pp.
137
148
.
11.
Bernstein
,
D.
,
Haddad
,
W.
, and
Sparks
,
G.
,
1995
, “
A Popov Criterion for Uncertain Linear Multivariable Systems
,”
Automatica
,
31
(
7
), pp.
1061
1064
.
12.
Nakhmani
,
A.
,
Lichtsinder
,
M.
, and
Zeheb
,
E.
,
2006
, “
Generalized Nyquist Criterion and Generalized Bode Diagram for Analysis and Synthesis of Uncertain Control Systems
,”
IEEE
24th Convention of Electrical and Electronics Engineers
, Eilat, Israel, Nov. 15–17, pp.
250
256
.
13.
Haddad
,
W.
, and
Bernstein
,
D.
,
1995
, “
Parameter-Dependent Lyapunov Functions and the Popov Criterion in Robust Analysis and Synthesis
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
536
540
.
14.
Sparks
,
A. G.
, and
Bernstein
,
D.
,
1994
, “
The Scaled Popov Criterion and Bounds for the Real Structured Singular Value
,”
IEEE Conference on Decision and Control
(
CDC
), Lake Buena Vista, FL, Dec. 14–16, pp.
245
251
.
15.
Bernstein
,
D. S.
,
2005
,
Matrix Mathematics: Theory, Facts and Formulas With Application to Linear Systems Theory
,
Princeton University Press
,
Princeton, NJ
.
16.
Khalil
,
N. H.
,
2002
,
Nonlinear Systems
,
Prentice Hall
,
Upper Saddle River, NJ
.
17.
Ivanescu
,
M.
,
2016
, “
Exponential Stabilization of a Class of Monodimensional Distributed Parameter Systems by Boundary Controller
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
6
), p.
064501
.
18.
Hendricks
,
E.
,
Jannerup
,
O.
, and
Sorensen
,
P. H.
,
2008
,
Linear Systems Control-Deterministic and Stochastic Methods
,
Springer-Verlag
,
Berlin
.
19.
Sun
,
L.
, and
Gan
,
J.
,
2010
, “
Researching of Two-Wheeled Self-Balancing Robot Base on LQR Combined With PID
,”
Second International Workshop on Intelligent Systems and Applications
(
WISA
), Wuhan, China, May 22–23, pp.
1
5
.
20.
Taylor
,
D. J.
,
2014
, “
Robust Bode Methods for Feedback Controller Design of Uncertain Systems
,”
Ph.D. thesis
, Carnegie Mellon University, Pittsburgh, PA.
21.
Ulukök
,
Z.
, and
Türkmen
,
G.
,
2013
, “
Some Upper Matrix Bounds for the Solution of the Continuous Algebraic Riccati Matrix Equation
,”
J. Appl. Math.
,
2013
, p.
792782
.
22.
Zhang
,
J.
, and
Liu
,
J.
,
2011
, “
New Lower Solution Bounds for the Continuous Algebraic Riccati Equation
,”
Electron. J. Linear Algebra
,
22
, pp.
191
202
.
23.
Vasudevan
,
H.
,
Dollar
,
A.
, and
Morrell
,
J.
,
2015
, “
Design of Control of Wheeled Inverted Pendulum Platforms
,”
ASME J. Mech. Robot.
,
7
(
4
), p.
041005
.
24.
Mulla
,
A.
,
Jalwadi
,
S.
, and
Unaune
,
D.
,
2014
, “
Performance Analysis of Skyhook, Groundhook and Hybrid Control Strategies on Semiactive Suspension System
,”
Int. J. Curr. Eng. Technol.
,
Special Issue-3
, pp.
265
271
.
You do not currently have access to this content.