A method is presented for slip analysis of a wheeled mobile manipulator. The said system consists of an industrial manipulator mounted on a mobile platform performing aircraft manufacturing tasks. Unlike tracked/legged mobile robots that may slip when negotiating slopes or climbing stairs, a wheeled mobile manipulator may slip resulting from the manipulator movement or the forces from the end-effector during fastening. Slip analysis is crucial to ensure pose accuracy for operation. In this study, first a universal friction constraint is used to derive the slip condition of the system. Three cases are considered, with the first case considering the reaction force in relation to the stand-off distance between the mobile manipulator and the workpiece. The second case deals with the joint speeds to investigate the effect of coupling terms including centrifugal forces and gyroscopic moments on slip. The third case deals with the joint accelerations to investigate the effect of inertia forces and moments on slip. Simulations and experiments are carried out to verify the proposed method.

References

1.
Liu
,
Y. G.
, and
Liu
,
G. J.
, 2010, “
Interaction Analysis and Online Tip-Over Avoidance for a Reconfigurable Tracked Mobile Modular Manipulator Negotiating Slopes
,”
IEEE/ASME Trans. Mechatronics
,
15
(
4
), pp.
623
635
.
2.
Korayem
,
M. H.
,
Shafei
,
A. M.
, and
Shafei
,
H. R.
,
2012
, “
Dynamic Modeling of Nonholonomic Wheeled Mobile Manipulators With Elastic Joints Using Recursive Gibbs–Appell Formulation
,”
Sci. Iran.
,
19
(
4
), pp.
1092
1104
.
3.
Chen
,
M. W.
, and
Zalzala
,
A. M. S.
,
1997
, “
Dynamic Modeling and Genetic-Based Trajectory Generation for Non-Holonomic Mobile Manipulators
,”
Control Eng. Pract.
,
5
(
1
), pp.
39
48
.
4.
Jamisola
,
R.
,
Ang
,
M. H.
,
Oetomo
,
D.
,
Khatib
,
O.
,
Lim
,
T. M.
, and
Lim
,
S. Y.
,
2002
, “
The Operational Space Formulation Implementation to Aircraft Canopy Polishing Using a Mobile Manipulator
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Washington, DC, May 11–15, Vol.
1
, pp.
400
405
.
5.
Vysin
,
M.
, and
Knoflicek
,
R.
,
2003
, “
The Hybrid Mobile Robot
,”
IEEE International Conference on Industrial Technology
(
ICIT
), Maribor, Slovenia, Dec. 10–12, Vol.
1
, pp.
262
264
.
6.
Korayem
,
M. H.
,
Shafei
,
A. M.
, and
Seidi
,
E.
,
2014
, “
Symbolic Derivation of Governing Equations for Dual-Arm Mobile Manipulators Used in Fruit-Picking and the Pruning of Tall Trees
,”
Comput. Electron. Agric.
,
105
, pp.
95
102
.
7.
Tsai
,
C. C.
,
Cheng
,
M. B.
, and
Lin
,
S. C.
,
2006
, “
Dynamic Modeling and Tracking Control of a Nonholonomic Wheeled Mobile Manipulator With Dual Arms
,”
J. Intell. Rob. Syst.
,
47
(
4
), pp.
317
340
.
8.
Tang
,
C. P.
,
Miller
,
P. T.
, and
Krovi
,
V. N.
,
2011
, “
Differential-Flatness-Based Planning and Control of a Wheeled Mobile Manipulator-Theory and Experiment
,”
IEEE/ASME Trans. Mechatronics
,
16
(
4
), pp.
768
773
.
9.
Chitta
,
S.
,
Cohen
,
B.
, and
Likhachev
,
M.
,
2010
, “
Planning for Autonomous Door Opening With a Mobile Manipulator
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp.
1799
1806
.
10.
Jiao
,
J.
,
Cao
,
Z. Q.
,
Zhao
,
P.
,
Liu
,
X.
, and
Tan
,
M.
,
2013
, “
Bezier Curve Based Path Planning for a Mobile Manipulator in Unknown Environments
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Shenzhen, China, Dec. 12–14, pp.
1864
1868
.
11.
Li
,
Y.
, and
Liu
,
Y.
,
2005
, “
Kinematics and Tip-Over Stability Analysis for the Mobile Modular Manipulator
,”
Proc. Inst. Mech. Eng. Part C
,
219
(
3
), pp.
331
343
.
12.
Korayem
,
M. H.
, and
Ghariblu
,
H.
,
2004
, “
Analysis of Wheeled Mobile Flexible Manipulator Dynamic Motions With Maximum Load Carrying Capacities
,”
Rob. Auton. Syst.
,
48
(
2–3
), pp.
63
76
.
13.
Korayem
,
M. H.
, and
Shafei
,
A. M.
,
2013
, “
Application of Recursive Gibbs-Appell Formulation in Deriving the Equations of Motion of N-Viscoelastic Robotic Manipulators in 3D Space Using Timoshenko Beam Theory
,”
Acta Astronaut.
,
83
, pp.
273
294
.
14.
Korayem
,
M. H.
,
Azimirad
,
V.
,
Nikoobin
,
A.
, and
Boroujeni
,
Z.
,
2010
, “
Maximum Load-Carrying Capacity of Autonomous Mobile Manipulator in an Environment With Obstacle Considering Tip Over Stability
,”
Int. J. Adv. Manuf. Technol.
,
46
(
5–8
), pp.
811
829
.
15.
Balakrishna
,
R.
, and
Ghosal
,
A.
,
1995
, “
Modeling of Slip for Wheeled Mobile Robot
,”
IEEE Trans. Rob. Autom.
,
11
(
1
), pp.
126
132
.
16.
Williams
,
R. L.
,
Carter
,
B. E.
,
Gallina
,
P.
, and
Rosati
,
G.
,
2002
, “
Dynamic Model With Slip for Wheeled Omnidirectional Robots
,”
IEEE Trans. Rob. Autom.
,
18
(
3
), pp.
285
293
.
17.
Stonier
,
D.
,
Cho
,
S. H.
,
Choi
,
S. L.
,
Kuppuswamy
,
N. S.
, and
Kim
,
J. H.
,
2007
, “
Nonlinear Slip Dynamics for an Omniwheel Mobile Robot Platform
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Rome, Italy, Apr. 10–14, pp.
2367
2372
.
18.
Gracia
,
L.
, and
Tornero
,
J.
,
2007
, “
Kinematic Modeling of Wheeled Mobile Robots With Slip
,”
Adv. Rob.
,
21
(
11
), pp.
1253
1279
.
19.
Dixon
,
W. E.
,
Dawson
,
D. M.
, and
Zergeroglu
,
E.
,
2000
, “
Robust Control of a Mobile Robot System With Kinematic Disturbance
,”
IEEE International Conference on Control Applications
(
CCA
), Anchorage, AK, Sept. 25–27, pp.
437
442
.
20.
Yu
,
T.
, and
Sarkar
,
N.
,
2014
, “
Control of a Mobile Robot Subject to Wheel Slip
,”
J. Intell. Rob. Syst.
,
74
(
3–4
), pp.
915
929
.
21.
Ishigami
,
G.
,
Nagatani
,
K.
, and
Yoshida
,
K.
,
2007
, “
Path Planning for Planetary Exploration Rovers and Its Evaluation Based on Wheel Slip Dynamics
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Rome, Italy, Apr. 10–14, pp. 2361–2366.
22.
Lin
,
W. S.
,
Chang
,
L. H.
, and
Yang
,
P. C.
,
2007
, “
Adaptive Critic Anti-Slip Control of Wheeled Autonomous Robot
,”
IET Control Theory Appl.
,
1
(
1
), pp.
51
57
.
23.
Sidek
,
N.
, and
Sarkar
,
N.
,
2008
, “
Dynamic Modeling and Control of Nonholonomic Mobile Robot With Lateral Slip
,”
Third International Conference on Systems
(
ICONS
), Cancun, Mexico, Apr. 13–18, pp. 35–40.
24.
Huang
,
Y. W.
,
Cao
,
Q. X.
, and
Leng
,
C. T.
,
2010
, “
The Path-Tracking Controller Based on Dynamic Model With Slip for One Four-Wheeled OMR
,”
Ind. Rob. Int. J.
,
37
(
2
), pp.
193
201
.
25.
Michałek
,
M. M.
,
Dutkiewicz
,
P.
,
Kiełczewski
,
M.
, and
Pazderski
,
D.
,
2010
, “
Vector-Field-Orientation Tracking Control for a Mobile Vehicle Disturbed by the Skid-Slip Phenomena
,”
J. Intell. Rob. Syst.
,
59
(
3–4
), pp.
341
365
.
26.
Song
,
T.
,
Xi
,
F. F.
, and
Guo
,
S.
,
2016
, “
Optimization of a Mobile Platform for a Wheeled Manipulator
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061007
.
27.
Guo
,
S.
,
Song
,
T.
,
Xi
,
F. F.
, and
Mohamed
,
R. P.
,
2017
, “
Tip-Over Stability Analysis for a Wheeled Mobile Manipulator
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
5
), p.
054501
.
28.
Orin
,
D. E.
, and
Cheng
,
F. T.
,
1989
, “
General Dynamic Formulation of the Force Distribution Equations
,”
Advanced Robotics
,
Springer
,
Berlin
, pp.
525
546
.
29.
Klein
,
C. A.
, and
Kittivatcharapong
,
S.
,
1990
, “
Optimal Force Distribution for the Legs of a Walking Machine With Friction Cone Constraints
,”
IEEE Trans. Rob. Autom.
,
6
(
1
), pp.
73
85
.
30.
Cheng
,
F. T.
, and
Orin
,
D. E.
,
1991
, “
Efficient Formulation of the Force-Distribution Equations for Simple Closed-Chain Robotic Mechanisms
,”
IEEE Trans. Syst., Man Cybern.
,
21
(
1
), pp.
25
32
.
31.
Nahon
,
M. A.
, and
Angeles
,
J.
,
1992
, “
Real-Time Force Optimization in Parallel Kinematic Chains Under Inequality Constraints
,”
IEEE Trans. Rob. Autom.
,
8
(
4
), pp.
439
450
.
32.
Marhefka
,
D. W.
, and
Orin
,
D. E.
,
1998
, “
Quadratic Optimization of Force Distribution in Walking Machines
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Leuven, Belgium, May 16–20, Vol.
1
, pp. 477–483.
33.
SuphiErden
,
M.
, and
Leblebicioğlu
,
K.
,
2007
, “
Torque Distribution in a Six-Legged Robot
,”
IEEE Trans. Rob.
,
23
(
1
), pp.
179
186
.
34.
Ambe
,
Y.
, and
Matsuno
,
F.
,
2012
, “
Leg-Grope-Walk—Walking Strategy on Weak and Irregular Slopes for a Quadruped Robot by Force Distribution
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Vilamoura, Portugal, Oct. 7–12, pp. 1840–1845.
35.
Mahfoudi
,
C.
,
Djouani
,
K.
,
Rechak
,
S.
, and
Bouaziz
,
M.
,
2003
, “
Optimal Force Distribution for the Legs of an Hexapod Robot
,”
IEEE Conference on Control Applications
(
CCA
), Istanbul, Turkey, June 23–25, Vol.
1
, pp. 657–663.
36.
Komatsu
,
H.
,
Endo
,
G.
, and
Hodoshima
,
R.
,
2013
, “
Basic Consideration About Optimal Control of a Quadruped Walking Robot During Slope Walking Motion
,”
IEEE Workshop on Advanced Robotics and Its Social Impacts
(
ARSO
), Tokyo, Japan, Nov. 7–9, pp. 224–230.
37.
Mahapatra
,
A.
,
Roy
,
S. S.
, and
Bhavanibhatla
,
K.
,
2015
, “
Energy-Efficient Inverse Dynamic Model of a Hexapod Robot
,”
International Conference on Robotics, Automation, Control and Embedded Systems
(
RACE
), Chennai, India, Feb. 18–20, pp.
1
7
.
38.
Song
,
T.
,
Xi
,
F. F.
, and
Guo
,
S.
,
2015
, “
A Comparison Study of Algorithms for Surface Normal Determination Based on Point Cloud Data
,”
Precis. Eng.
,
39
, pp.
47
55
.
39.
Xi
,
F. F.
,
2009
,
Computational Dynamics
(Graduate Course Lecture Notes),
Ryerson University
,
Toronto, ON, Canada
.
40.
Bianco
,
G. L.
,
2009
, “
Evaluation of Generalized Force Derivatives by Means of a Recursive Newton–Euler Approach
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
954
959
.
41.
Qu
,
W.-W.
,
Shi
,
X.
,
Dong
,
H. Y.
,
Feng
,
P. J.
,
Zhu
,
L. S.
, and
Ke
,
Y. L.
,
2014
, “
Simulation and Test on Process of Percussive Impact Riveting
,”
J. Zhejiang Univ. (Eng. Sci.)
,
48
(
8
), pp.
1411
1418
.http://www.zjujournals.com/eng/EN/abstract/abstract12361.shtml
42.
ABB Robotics
,
2014
, “
Technical Reference Manual: RAPID Instructions, Functions and Data Types
,” ABB Robotics, Västerås, Sweden.
You do not currently have access to this content.