The design of a robust fixed low-order controller for uncertain decoupled multi-input multi-output (MIMO) systems is proposed in this paper. The simplified decoupling is used as a decoupling system technique. In this work, the real system behavior is described by a linear model with parametric uncertainties. The main objective of the control law is to satisfy, in presence of model uncertainties, some step response performances such as the settling time and the overshoot. The controller parameters are obtained by resolving a min–max nonconvex optimization problem. The resolution of this kind of problems using standard methods can generate a local solution. Thus, we propose, in this paper, the use of the generalized geometric programming (GGP) which is a global optimization method. Simulation results and a comparison study between the presented approach, a proportional integral (PI) controller, and a local optimization method are given in order to shed light the efficiency of the proposed controller.

References

References
1.
Skogestad
,
S.
, and
Postlethwaite
,
I.
,
2005
,
Multivariable Feedback Control: Analysis and Design
,
Wiley
,
New York
.
2.
Ogunnaike
,
B. A.
, and
Harmon
,
R.
,
1994
,
Process Dynamics, Modelling and Control
,
Oxford University Press
,
New York
.
3.
Wang
,
Q. G.
,
2003
,
Decoupling Control
(Lecture Notes in Control and Information Sciences),
Springer Verlag
,
Berlin
.
4.
Luyben
,
W. L.
,
1970
, “
Distillation Decoupling
,”
AIChE J.
,
16
(
2
), pp.
198
203
.
5.
Seborg
,
D. E.
,
Mellichamp
,
D. A.
,
Edgar
,
T. F.
, and
Doyle
,
F. J.
,
2010
,
Process Dynamics, Modelling and Control
,
Wiley
,
New York
.
6.
Shinskey
,
F. G.
,
1988
,
Process Control Systems: Application, Design, and Adjustment
,
McGraw-Hill
,
New York
.
7.
Gagnon
,
E.
,
Pomerleau
,
A.
, and
Desbiens
,
A.
,
1998
, “
Simplified, Ideal or Inverted Decoupling?
,”
ISA Trans.
,
37
(
4
), pp.
265
276
.
8.
Garrido
,
J.
,
Vázquez
,
F.
, and
Morilla
,
F.
,
2012
, “
Centralized Multivariable Control by Simplified Decoupling
,”
J. Process Control
,
22
(
6
), pp.
1044
1062
.
9.
Jevtović
,
B. T.
, and
Mataušek
,
M. R.
,
2010
, “
PID Controller Design of TITO System Based on Ideal Decoupler
,”
J. Process Control
,
20
(
7
), pp.
869
876
.
10.
Osinuga
,
M.
,
Patra
,
S.
, and
Lanzon
,
A.
,
2012
, “
State-Space Solution to Weight Optimization Problem in H∞ Loop-Shaping Control
,”
Automatica
,
48
(
3
), pp.
505
513
.
11.
Ramirez
,
D. R.
,
Arahal
,
M. R.
, and
Camacho
,
E. F.
,
2004
, “
Min-Max Predictive Control of a Heat Exchanger Using a Neural Network Solver
,”
IEEE Trans. Control Syst. Technol.
,
12
(
5
), pp.
776
786
.
12.
Zafiriou
,
E.
,
1990
, “
Robust Model Predictive Control of Processes With Hard Constraints
,”
Comput. Chem. Eng.
,
14
(
45
), pp.
359
371
.
13.
Zheng
,
Z. Q.
, and
Morari
,
M.
,
1993
, “
Robust Stability of Constrained Model Predictive Control
,”
American Control Conference
(
ACC
), San Francisco, CA, June 2–4, pp.
379
383
.
14.
Lee
,
J. H.
, and
Cooley
,
B. L.
,
2000
, “
Minmax Predictive Control Techniques for a Linear State-Space System With a Bounded Set of Input Matrices
,”
Automatica
,
36
(
3
), pp.
463
473
.
15.
Gao
,
Y.
, and
Chong
,
K. T.
,
2012
, “
The Explicit Constrained Min-Max Model Predictive Control of a Discrete-Time Linear System With Uncertain Disturbances
,”
IEEE Trans. Autom. Control
,
57
(
9
), pp.
2373
2378
.
16.
Gruber
,
J.
,
Ramirez
,
D.
,
Alamo
,
T.
, and
Camacho
,
E.
,
2011
, “
Minmax MPC Based on an Upper Bound of the Worst Case Cost With Guaranteed Stability: Application to a Pilot Plant
,”
J. Process Control
,
21
(
1
), pp.
194
204
.
17.
Casavola
,
A.
,
Famularo
,
D.
, and
Franzé
,
G.
,
2004
, “
Robust Constrained Predictive Control of Uncertain Norm-Bounded Linear Systems
,”
Automatica
,
40
(
11
), pp.
1865
1876
.
18.
Tahir
,
F.
, and
Jaimoukha
,
I. M.
,
2013
, “
Robust Feedback Model Predictive Control of Constrained Uncertain Systems
,”
J. Process Control
,
23
(
2
), pp.
189
200
.
19.
Mahmoodabadi
,
M.
, and
Nemati
,
A.
,
2016
, “
A Novel Adaptive Genetic Algorithm for Global Optimization of Mathematical Test Functions and Real-World Problems
,”
Eng. Sci. Technol. Int. J.
,
19
(
4
), pp.
2002
2021
.
20.
Zhong
,
W.
, and
Palazzolo
,
A.
,
2015
, “
Magnetic Bearing Rotordynamic System Optimization Using Multi-Objective Genetic Algorithms
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
2
), p.
021012
.
21.
Darabi
,
A.
,
Alfi
,
A.
,
Kiumarsi
,
B.
, and
Modares
,
H.
,
2011
, “
Employing Adaptive Particle Swarm Optimization Algorithm for Parameter Estimation of an Exciter Machine
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
1
), p.
011013
.
22.
Kiran
,
M.
,
Gündüz
,
M.
, and
Baykan
,
O.
,
2012
, “
A Novel Hybrid Algorithm Based on Particle Swarm and Ant Colony Optimization for Finding the Global Minimum
,”
Appl. Math. Comput.
,
219
(
4
), pp.
1515
1521
.
23.
Ben Aicha
,
F.
,
Bouani
,
F.
, and
Ksouri
,
M.
,
2013
, “
A Multivariable Multiobjective Predictive Controller
,”
Comput. Math. Appl.
,
23
(
1
), pp.
5
45
.
24.
Cuenca
,
A.
, and
Salt
,
J.
,
2012
, “
RST Controller Design for a Non-Uniform Multi-Rate Control System
,”
J. Process Control
,
22
(
10
), pp.
1865
1877
.
25.
Jin
,
L.
, and
Kim
,
Y. C.
,
2008
, “
Fixed, Low-Order Controller Design With Time Response Specifications Using Non-Convex Optimization
,”
ISA Trans.
,
47
(
4
), pp.
429
438
.
26.
Ben Hariz
,
M.
,
Bouani
,
F.
, and
Ksouri
,
M.
,
2012
, “
Robust Controller for Uncertain Parameters Systems
,”
ISA Trans.
,
51
(
5
), pp.
632
640
.
27.
Ben Hariz
,
M.
,
Bouani
,
F.
, and
Ksouri
,
M.
,
2014
, “
Implementation of a Fixed Low Order Controller on STM32 Microcontroller
,”
International Conference on Control, Engineering and Information Technology
(
CEIT
), Sousse, Tunisia, Mar. 22–25, pp.
244
252
.
28.
Ben Hariz
,
M.
,
Bouani
,
F.
, and
Ksouri
,
M.
,
2015
, “
Design of a Controller With Time Response Specifications on STM32 Microcontroller
,”
Handbook of Research on Advances in Computational Intelligence and Robotics
(Advances in Computational Intelligence and Robotics, Vol.
1
),
A. T.
Azar
and
S.
Vaidyanathan
, eds.,
IGI Global
, Hershey, PA, pp.
624
650
.
29.
Ben Hariz
,
M.
, and
Bouani
,
F.
,
2016
, “
Synthesis and Implementation of a Robust Fixed Low-Order Controller for Uncertain Systems
,”
Arabian J. Sci. Eng.
,
41
(
9
), pp.
3645
3654
.
30.
Ben Hariz
,
M.
,
Chagra
,
W.
, and
Bouani
,
F.
,
2013
, “
Controllers Design for MIMO Systems With Time Response Specifications
,”
International Conference on Control, Decision and Information Technologies
(
CoDIT
), Hammamet, Tunisia, May 6–8, pp.
573
578
.
31.
Ben Hariz
,
M.
,
Chagra
,
W.
, and
Bouani
,
F.
,
2014
, “
Synthesis of Controllers for MIMO Systems With Time Response Specifications
,”
Int. J. Syst. Dyn. Appl.
,
3
(
3
), pp.
25
52
.
32.
Ben Hariz
,
M.
, and
Bouani
,
F.
,
2015
, “
Design of Controllers for Decoupled TITO Systems Using Different Decoupling Techniques
,”
20th International Conference on Methods and Models in Automation and Robotics
(
MMAR
), Miedzyzdroje, Poland, Aug. 24–27, pp.
1116
1121
.
33.
Kim
,
Y.
,
Kim
,
K.
, and
Manabe
,
S.
,
2004
, “
Sensitivity of Time Response to Characteristic Ratios
,”
American Control Conference
(
ACC
), Boston, MA, June 30–July 2, pp.
2723
2728
.
34.
Kim
,
Y. C.
,
Keel
,
L. H.
, and
Bhattacharyya
,
S. P.
,
2003
, “
Transient Response Control Via Characteristic Ratio Assignment
,”
IEEE Trans. Autom. Control
,
48
(
12
), pp.
2238
2244
.
35.
Jha
,
N. K.
,
1995
, “
Geometric Programming Based Robot Control Design
,”
Comput. Ind. Eng.
,
29
(
14
), pp.
631
635
.
36.
Choi
,
J. C.
, and
Bricker
,
D. L.
,
1996
, “
Effectiveness of a Geometric Programming Algorithm for Optimization of Machining Economics Models
,”
Comput. Oper. Res.
,
23
(
10
), pp.
957
961
.
37.
Maranas
,
C. D.
, and
Floudas
,
C. A.
,
1997
, “
Global Optimization in Generalized Geometric Programming
,”
Comput. Chem. Eng.
,
21
(
4
), pp.
351
369
.
38.
Porn
,
R.
,
Bjork
,
K.
, and
Westerlund
,
T.
,
2008
, “
Global Solution of Optimization Problems With Signomial Parts
,”
Discrete Optim.
,
5
(
1
), pp.
108
120
.
39.
Tsai
,
J.
,
2009
, “
Treating Free Variables in Generalized Geometric Programming Problems
,”
Comput. Chem. Eng.
,
33
(
1
), pp.
239
243
.
40.
Tsai
,
J.
,
Lin
,
M.
, and
Hu
,
Y.
,
2007
, “
On Generalized Geometric Programming Problems With Non-Positive Variables
,”
Eur. J. Oper. Res.
,
178
(
1
), pp.
10
19
.
41.
Bjork
,
K.
,
Lindberg
,
P. O.
, and
Westerlund
,
T.
,
2003
, “
Some Convexifications in Global Optimization of Problems Containing Signomial Terms
,”
Comput. Chem. Eng.
,
27
(
5
), pp.
669
679
.
42.
Liberti
,
L.
, and
Maculan
,
N.
,
2006
,
Global Optimization From Theory to Implementation
,
Springer
,
Berlin
.
43.
Druskin
,
V.
, and
Simoncini
,
V.
,
2011
, “
Adaptive Rational Krylov Subspaces for Large-Scale Dynamical Systems
,”
Syst. Control Lett.
,
60
(
8
), pp.
546
560
.
44.
Lee
,
H.
,
Chu
,
C.
, and
Feng
,
W.
,
2006
, “
An Adaptive-Order Rational Arnoldi Method Formodel-Order Reductions of Linear Time-Invariant Systems
,”
Linear Algebra Appl.
,
415
(
23
), pp.
235
261
.
45.
Lequesne
,
D.
,
2006
,
Régulation PID Analogique-Numérique-Floue
,
Hermes Sciences Publications
,
Lavoisier, Paris, France
.
You do not currently have access to this content.