This paper delivers an in-depth review of the state-of-the-art technologies relevant to rail flaw detection giving emphasis to their use in detection of rail flaw defects at practical inspection vehicle speeds. The review not only looks at the research being carried out but also investigates the commercial products available for rail flaw detection. It continues further to identify the methods suitable to be adopted in a moving vehicle rail flaw detection system. Even though rail flaw detection has been a well-researched area for decades, an in-depth review summarizing all available technologies together with an assessment of their capabilities has not been published in the recent past according to the knowledge of the authors. As such, it is believed that this review paper will be a good source of information for future researchers in this area.

References

1.
Zerbst
,
U.
, and
Beretta
,
S.
,
2011
, “
Failure and Damage Tolerance Aspects of Railway Components
,”
Eng. Failure Anal.
,
18
(
2
), pp.
534
542
.
2.
Li
,
Y. D.
,
Liu
,
C. B.
,
Xu
,
N.
,
Wua
,
X. F.
,
Guo
,
W. M.
, and
Shi
,
J. B.
,
2013
, “
A Failure Study of the Railway Rail Serviced for Heavy Cargo Trains
,”
Case Stud. Eng. Failure Anal.
,
1
(
4
), pp.
243
248
.
3.
Malcolm Kerr, 2012, “
RailCorp Engineering Manual—Track Rail Defects Handbook
,” RailCorp, Sydney, Australia, accessed May 20,
2017
, http://www.asa.transport.nsw.gov.au/sites/default/files/asa/railcorp-legacy/disciplines/civil/tmc-226.pdf
4.
Greene
,
R. J.
,
Yates
,
J. R.
, and
Patterson
,
E. A.
,
2007
, “
Crack Detection in Rail Using Infrared Methods
,”
Opt. Eng.
,
46
(
5
), p.
051013
.
5.
Favro
,
L. D.
,
Thomas
,
R. L.
,
Han
,
X.
,
Ouyang
,
Z.
,
Newaz
,
G.
, and
Gentile
,
D.
,
2001
, “
Sonic Infrared Imaging of Fatigue Cracks
,”
Int. J. Fatigue
,
23
(
S1
), pp.
471
476
.
6.
Song
,
Y.
, and
Han
,
X.
,
2015
, “
FEA Study of Non-Linear Effect of Coupling Media to Sonic Infrared Imaging
,”
AIP Conf. Proc.
,
1650
(1), pp.
1774
1781
.
7.
Han
,
X.
,
Islam
,
M. S.
,
Newaz
,
G.
,
Favro
,
L. D.
, and
Thomas
,
R. L.
,
2006
, “
Finite Element Modeling of the Heating of Cracks During Sonic Infrared Imaging
,”
J. Appl. Phys.
,
99
(
7
), p.
074905
.
8.
Lu
,
J.
,
Han
,
X.
,
Newaz
,
G.
,
Favro
,
L. D.
, and
Thomas
,
R. L.
,
2007
, “
Study of the Effect of Crack Closure in Sonic Infrared Imaging
,”
Nondestr. Test. Eval.
,
22
(
2/3
), pp.
127
135
.
9.
Han
,
X.
, and
Song
,
Y.
,
2013
, “
Study the Effect of Engagement Force of Ultrasound Transducer on Crack Detectability in Sonic IR Imaging
,”
AIP Conf. Proc.
,
1511
(
1
), pp.
532
538
.
10.
Wilson
,
J.
,
Tian
,
G. Y.
,
Mukriz
,
I.
, and
Almond
,
D.
,
2011
, “
PEC Thermography for Imaging Multiple Cracks From Rolling Contact Fatigue
,”
NDT&E Int.
,
44
(
6
), pp.
505
512
.
11.
Abidin
,
I. Z.
,
Tian
,
G. Y.
,
Wilson
,
J.
,
Yang
,
S.
, and
Almond
,
D.
,
2010
, “
Quantitative Evaluation of Angular Defects by Pulsed Eddy Current Thermography
,”
NDT&E Int.
,
43
(
7
), pp.
537
546
.
12.
He
,
Y. Z.
,
Pan
,
M. C.
,
Luo
,
F. L.
, and
Tian
,
G. Y.
,
2011
, “
Pulsed Eddy Current Imaging and Frequency Spectrum Analysis for Hidden Defect Nondestructive Testing and Evaluation
,”
NDT&E Int.
,
44
(
4
), pp.
344
352
.
13.
Weekes
,
B.
,
Almond
,
D. P.
,
Cawley
,
P.
, and
Barden
,
T.
,
2012
, “
Eddy-Current Induced Thermography—Probability of Detection Study of Small Fatigue Cracks in Steel, Titanium and Nickel-Based Superalloy
,”
NDT&E Int.
,
49
, pp.
47
56
.
14.
Peng
,
J.
,
Tian
,
G. Y.
,
Wang
,
L.
,
Zhang
,
Y.
,
Li
,
K.
, and
Gao
,
X.
,
2015
, “
Investigation Into Eddy Current Pulsed Thermography for Rolling Contact Fatigue Detection and Characterization
,”
NDT&E Int.
,
74
, pp.
72
80
.
15.
Yang
,
B.
,
Zhao
,
Y.
, and
Zhang
,
W.
,
2011
, “
Quantification of Crack Defect Using a New Pulsed Eddy Current Probe
,”
Nondestr. Test. Eval.
,
26
(
2
), pp.
155
168
.
16.
Kostson
,
E.
,
Weekes
,
B.
,
Almond
,
D. P.
,
Wilson
,
J.
, and
Tian
,
G. Y.
,
2011
, “
Crack Detection Using Pulsed Eddy Current Stimulated Thermography
,”
AIP Conf. Proc.
,
1335
(
1
), pp.
415
422
.
17.
Ghoni
,
R.
,
Dollah
,
M.
,
Sulaiman
,
A.
, and
Ibrahim
,
F. M.
,
2014
, “
Defect Characterization Based on Eddy Current Technique: Technical Review
,”
Adv. Mech. Eng.
,
6
, p.
182496
.
18.
Yılmazer
,
P.
,
Amini
,
A.
, and
Papaelias
,
M.
,
2012
, “
The Structural Health Condition Monitoring of Rail Steel Using Acoustic Emission Techniques
,”
51st Annual Conference of the British Institute of Non-Destructive Testing
(
BINDT
), Northamptonshire, UK, Sept. 11–13, pp.
51
62
.http://www.bindt.org/downloads/ndt2012_1c3.pdf
19.
Kostryzhev
,
A. G.
,
Davis
,
C. L.
, and
Roberts
,
C.
,
2013
, “
Detection of Crack Growth in Rail Steel Using Acoustic Emission
,”
Ironmaking Steelmaking
,
40
(
2
), pp.
98
102
.
20.
Bruzelius
,
K.
, and
Mba
,
D.
,
2004
, “
An Initial Investigation on the Potential Applicability of Acoustic Emission to Rail Track Fault Detection
,”
NDT&E Int.
,
37
(
7
), pp.
507
516
.
21.
Bollas
,
K.
,
Papasalouros
,
D.
,
Kourousis
,
D.
, and
Anastasopoulus
,
A.
,
2010
, “
Acoustic Emission Inspection of Rail Wheels
,”
J. Acoust. Emiss.
,
28
, pp.
215
228
.http://www.ndt.net/article/jae/papers/28-215.pdf
22.
Harbuz
,
Y.
, and
Doroshko
,
S.
,
2012
, “
Acoustic Emission Analysis of Fatigue Crack Development
,”
17th International Conference: Mechanika
, Kaunas, Lithuania, Apr. 12–13, pp.
73
76
.https://ortus.rtu.lv/science/en/publications/12975-Acoustic+Emission+Analysis+of+Fatigue+Crack+Development
23.
Marfo
,
A.
,
Luo
,
Y.
, and
Zhong-an
,
C.
,
2013
, “
Quantitative Acoustic Emission Fatigue Crack Characterization in Structural Steel and Weld
,”
Adv. Civ. Eng.
,
2013
, p.
461529
.http://dx.doi.org/10.1155/2013/461529
24.
Zhang
,
X.
,
Feng
,
N.
,
Zou
,
Z.
,
Wang
,
Y.
, and
Shen
,
Y.
,
2015
, “
An Investigation on Rail Health Monitoring Using Acoustic Emission Technique by Tensile Test
,”
IEEE International Instrumentation and Measurement Technology Conference
(
I2MTC
), Pisa, Italy, May 11–14, pp.
1046
1051
.
25.
Feng
,
N.
,
Zhang
,
X.
,
Zou
,
Z.
,
Wang
,
Y.
, and
Yi
,
S.
,
2015
, “
Rail Health Monitoring Using Acoustic Emission Technique Based on NMF and RVM
,”
IEEE International Instrumentation and Measurement Technology Conference
(
I2MTC
), Pisa, Italy, May 11–14, pp.
699
704
.
26.
Bazulin
,
E. G.
,
2010
, “
SAFT Imaging of Flaws in the Rail Base Blade With Consideration of Multiple Reflections of an Ultrasonic Pulse From the Boundaries of a Test Object
,”
Russ. J. Nondestr. Test.
,
46
(
2
), pp.
125
136
.
27.
Utrata
,
D.
,
2002
, “
Exploring Enhanced Rail Flaw Detection Using Ultrasonic Phased Array Inspection
,”
AIP Conf. Proc.
,
615
(1), pp.
1813
1818
.
28.
Utrata
,
D.
, and
Clark
,
R.
,
2003
, “
Groundwork for Rail Flaw Detection Using Ultrasonic Phased Array Inspection
,”
AIP Conf. Proc.
,
657
(1), pp.
799
805
.
29.
Bazulin
,
E. G.
,
2013
, “
Comparison of Systems for Ultrasonic Nondestructive Testing Using Antenna Arrays or Phased Antenna Arrays
,”
Russ. J. Nondestr. Test.
,
49
(
7
), pp.
404
423
.
30.
Hesse
,
D.
, and
Cawley
,
P.
,
2006
, “
Excitation of Surface Wave Modes in Rails and Their Application for Defect Detection
,”
AIP Conf. Proc.
,
820
(1), pp.
1593
1600
.
31.
Edwards
,
R. S.
,
Jian
,
X.
,
Fan
,
Y.
, and
Dixon
,
S.
,
2006
, “
Rail Defect Detection Using Ultrasonic Surface Waves
,”
AIP Conf. Proc.
,
820
(1), pp.
1601
1608
.
32.
Hesse
,
D.
,
2007
, “
Rail Inspection Using Ultrasonic Surface Waves
,”
Ph.D. thesis
, Imperial College London, London.https://workspace.imperial.ac.uk/nde/Public/Daniel_Hesse_Thesis.pdf
33.
Edwards
,
R. S.
,
Dixon
,
S.
, and
Jian
,
X.
,
2006
, “
Characterisation of Defects in the Railhead Using Ultrasonic Surface Waves
,”
NDT&E Int.
,
39
(
6
), pp.
468
475
.
34.
Marques
,
R. S.
,
2011
, “
Development of a Rail Track Ultrasonic Inspection Method
,”
Master thesis
, Universidade Técnica de Lisboa, Lisbon, Portugal.https://fenix.tecnico.ulisboa.pt/downloadFile/395143172284/Extended%20abstract.pdf
35.
Papaelias
,
M. Ph.
,
Lugg
,
M. C.
,
Roberts
,
C.
, and
Davis
,
C. L.
,
2009
, “
High-Speed Inspection of Rails Using ACFM Techniques
,”
NDT&E Int.
,
42
(
4
), pp.
328
335
.
36.
Nicholson
,
G. L.
,
Kostryzhev
,
A. G.
,
Hao
,
X. J.
, and
Davis
,
C. L.
,
2011
, “
Modelling and Experimental Measurements of Idealised and Light-Moderate RCF Cracks in Rails Using an ACFM Sensor
,”
NDT&E Int.
,
44
(
5
), pp.
427
437
.
37.
Papaelias
,
M. Ph.
,
Roberts
,
C.
,
Davis
,
C. L.
,
Lugg
,
M.
, and
Smith
,
M.
,
2008
, “
Detection and Quantification of Rail Contact Fatigue Cracks in Rails Using ACFM Technology
,”
Insight
,
50
(
7
), pp.
364
368
.
38.
Rowshandel
,
H.
,
Papaelias
,
M.
,
Roberts
,
C.
, and
Davis
,
C.
,
2011
, “
Development of Autonomous ACFM Rail Inspection Techniques
,”
Insight
,
53
(
2
), pp.
85
89
.
39.
Low
,
C. K.
, and
Wong
,
B. S.
,
2004
, “
Defect Evaluation Using the Alternating Current Field Measurement Technique
,”
Insight
,
46
(
10
), pp.
598
605
.
40.
Papaelias
,
M. Ph.
,
Roberts
,
C.
,
Davis
,
C. L.
,
Blakeley
,
B.
, and
Lugg
,
M.
,
2010
, “
Further Developments in High-Speed Detection of Rail Rolling Contact Fatigue Using ACFM Techniques
,”
Insight
,
52
(
7
), pp.
358
360
.
41.
Nicholson
,
G. L.
,
Rowshandel
,
H.
,
Hao
,
X. J.
, and
Davis
,
C. L.
,
2013
, “
Measurement and Modelling of ACFM Response to Multiple RCF Cracks in Rail and Wheels
,”
Ironmaking Steelmaking
,
40
(
2
), pp.
87
91
.
42.
Wei
,
Q.
,
Zhang
,
X.
,
Wang
,
Y.
,
Feng
,
N.
, and
Shen
,
Y.
,
2013
, “
Rail Defect Detection Based on Vibration Acceleration Signals
,”
IEEE International Instrumentation and Measurement Technology Conference
(
I2MTC
), Minneapolis, MN, May 6–9, pp.
1194
1199
.
43.
Zhang
,
X.
,
Wang
,
Y.
,
Feng
,
N.
, and
Shen
,
Y.
,
2011
, “
Flaw Detection in High-Speed Train's Rail Based on EMD and PSD
,”
IEEE Instrumentation and Measurement Technology Conference
(
I2MTC
), Binjiang, China, May 10–12, pp.
1
5
.
44.
Liang
,
B.
,
Iwnicki
,
S.
,
Ball
,
A.
, and
Young
,
A. E.
,
2015
, “
Adaptive Noise Cancelling and Time–Frequency Techniques for Rail Surface Defect Detection
,”
Mech. Syst. Signal Process.
,
54–55
, pp.
41
51
.
45.
Toliyat
,
H. A.
,
Abbaszadeh
,
K.
,
Rahimian
,
M. M.
, and
Olson
,
L. E.
,
2003
, “
Rail Defect Diagnosis Using Wavelet Packet Decomposition
,”
IEEE Trans. Ind. Appl.
,
39
(
5
), pp.
1454
1461
.
46.
Lanza di Scalea
,
F.
, and
McNamara
,
J.
,
2004
, “
Wavelet Transform for Characterizing Longitudinal and Lateral Transient Vibrations of Railroad Tracks
,”
Res. Nondestr. Eval.
,
15
(
2
), pp.
87
98
.
47.
Yi
,
Z.
,
Kaican
,
W.
,
Kang
,
L.
,
Guofu
,
Z.
, and
Shujuan
,
W.
,
2010
, “
Rail Flaw Detection System Based on Electromagnetic Acoustic Technique
,”
Fifth IEEE Conference on Industrial Electronics and Applications
(
ICIEA
), Taichung, China, June 15–17, pp.
211
215
.
48.
Petcher
,
P. A.
,
Potter
,
M. D. G.
, and
Dixon
,
S.
,
2014
, “
A New Electromagnetic Acoustic Transducer (EMAT) Design for Operation on Rail
,”
NDT&E Int.
,
65
, pp.
1
7
.
49.
Lee
,
J.
,
Hwang
,
J.
,
Jun
,
J.
, and
Choi
,
S.
,
2008
, “
Nondestructive Testing and Crack Evaluation of Ferromagnetic Material by Using the Linearly Integrated Hall Sensor Array
,”
J. Mech. Sci. Technol.
,
22
(
12
), pp.
2310
2317
.
50.
Finkel
,
P.
, and
Godinez
,
V.
,
2004
, “
Electromagnetic Stimulation of the Ultrasonic Signal for Nondestructive Detection of Ferromagnetic Inclusions and Flaws
,”
IEEE Trans. Magn.
,
40
(
4
), pp.
2179
2181
.
51.
Zhao
,
Q.
,
Hao
,
J. N.
, and
Yin
,
W. Y.
,
2013
, “
A Simulation Study of Flaw Detection for Rail Sections Based on High Frequency Magnetic Induction Sensing Using the Boundary Element Method
,”
Prog. Electromagn. Res.
,
141
, pp.
309
325
.
52.
Lei
,
K.
,
Wujun
,
M.
,
Chao
,
L.
, and
Shujuan
,
W.
,
2008
, “
Research on Weak Signal Detection Technique for Electromagnetic Ultrasonic Inspection System
,”
Third IEEE Conference on Industrial Electronics and Applications
(
ICIEA
), Singapore, June 3–5, pp.
2394
2399
.
53.
Ogi
,
H.
,
Hirao
,
M.
, and
Ohtani
,
T.
,
1997
, “
Flaw Detection by Line-Focusing Electromagnetic Acoustic Transducers
,”
IEEE
Ultrasonics Symposium
, Toronto, ON, Canada, Oct. 5–8, pp.
653
656
.
54.
Jin
,
L.
,
Yang
,
Q.
,
Liu
,
S.
,
Zhang
,
C.
, and
Li
,
P.
,
2010
, “
Electromagnetic Stimulation of the Acoustic Emission for Fatigue Crack Detection of the Sheet Metal
,”
IEEE Trans. Appl. Supercond.
,
20
(
3
), pp.
1848
1851
.
55.
Hashizume
,
H.
,
Shibata
,
T.
, and
Yuki
,
K.
,
2004
, “
Crack Detection Method Using Electromagnetic Waves
,”
Int. J. Appl. Electromagn. Mech.
,
20
(
3–4
), pp.
171
178
.http://content.iospress.com/articles/international-journal-of-applied-electromagnetics-and-mechanics/jae00662
56.
Cerniglia
,
D.
,
Garcia
,
G.
,
Giradi
,
G.
, and
Kalay
,
S.
,
2009
, “
The Development and Commissioning of a Laser-Based Ultrasonic Rail Inspection System
,”
Ninth International Heavy Haul Conference
(
IHHC
), Shanghai, China, June 22–25, pp.
147
152
.http://railknowledgebank.com/Presto/content/Detail.aspx?ctID=Y3RDb3B5X29mX1RoZXNlcw==&rID=ODk5&ssid=c2NyZWVuSURfMTc2MzM=
57.
Cerniglia
,
D.
,
Garcia
,
G.
,
Kalay
,
S.
, and
Prior
,
F.
,
2006
, “
Application of Laser Induced Ultrasound for Rail Inspection
,” Seventh World Congress on Railway Research (
WCRR
), Montreal, QC, Canada, June 4–8, pp.
1
7
.http://uic.org/cdrom/2006/wcrr2006/pdf/272.pdf
58.
Wooh
,
S. C.
,
Zhou
,
Q.
, and
Wang
,
J.
,
2002
, “
Laser Ultrasonic Detection of Rail Defects
,”
AIP Conf. Proc.
,
615
(1), pp.
332
339
.
59.
Liu
,
P.
,
Sohn
,
H.
,
Kundu
,
T.
, and
Yang
,
S.
,
2014
, “
Noncontact Detection of Fatigue Cracks by Laser Nonlinear Wave Modulation Spectroscopy (LNWMS)
,”
NDT&E Int.
,
66
, pp.
106
116
.
60.
Kromine
,
A. K.
,
Fomitchov
,
P. A.
,
Krishnaswamy
,
S.
, and
Achenbach
,
J. D.
,
2000
, “
Laser Ultrasonic Detection of Surface Breaking Discontinuities: Scanning Laser Source Technique
,”
Mater. Eval.
,
58
(
2
), pp.
60
85
.https://www.osti.gov/scitech/biblio/20015649
61.
Arias
,
I.
, and
Achenbach
,
J. D.
,
2004
, “
A Model for the Ultrasonic Detection of Surface-Breaking Cracks by the Scanning Laser Source Technique
,”
Wave Motion
,
39
(
1
), pp.
61
75
.
62.
Gurvich
,
A. K.
,
Samokrutov
,
A.
, and
Shevaldykin
,
V. G.
,
2006
, “
Guided Wave Ultrasonic Flaw Detection in Rails: Application Experience
,”
Ninth European Conference on NDT
, Berlin, Sept. 25–29, Paper No.
We.4.5.4
.http://docplayer.net/47492654-Guided-wave-ultrasonic-flaw-detection-in-rails-application-experience.html
63.
Zumpano
,
G.
, and
Meo
,
M.
,
2006
, “
A New Damage Detection Technique Based on Wave Propagation for Rails
,”
Int. J. Solids Struct.
,
43
(
5
), pp.
1023
1046
.
64.
Singh
,
R.
,
Sharma
,
S.
, and
Sharma
,
S.
,
2014
, “
Guided Waves for Damage Monitoring in Plates With Corrosion Defects
,”
Int. J. Innovative Res. Sci. Eng. Technol.
,
3
(
3
), pp.
9982
9993
.https://www.ijirset.com/upload/2014/march/28_Guided.pdf
65.
Carandente
,
R.
,
Lovstad
,
A.
, and
Cawley
,
P.
,
2012
, “
The Influence of Sharp Edges in Corrosion Profiles on the Reflection of Guided Waves
,”
NDT&E Int.
,
52
, pp.
57
68
.
66.
Catton
,
P.
,
Mudge
,
P.
, and
Balachandran
,
W.
,
2008
, “
Ultrasonic Guided Waves–The Future of Non-Destructive Testing?
,”
Conference for the Engineering Doctorate in Environmental Technology
, Guildford, UK, June 4, p.
37
.
67.
Lee
,
C. M.
,
Rose
,
J. L.
, and
Cho
,
Y.
,
2009
, “
A Guided Wave Approach to Defect Detection Under Shelling in Rail
,”
NDT&E Int.
,
42
(
3
), pp.
174
180
.
68.
Moustakidis
,
S.
,
Kappatos
,
V.
,
Karlsson
,
P.
,
Selcuk
,
C.
,
Hrissagis
,
K.
, and
Gan
,
T. H.
,
2012
, “
An Automated Long Range Ultrasonic Rail Flaw Detection System Based on the Support Vector Machine Algorithm
,”
Computers in Railways XIII: Computer System Design and Operation in the Railway and Other Transit Systems
, Vol.
127
,
WIT Press
, Southampton, UK, pp.
199
210
.
69.
Wilkinson
,
A.
,
2012
, “
Long Range Inspection and Condition Monitoring of Rails Using Guided Waves
,”
51st Annual Conference of the British Institute of Non-Destructive Testing
(
BINDT
), Northamptonshire, UK, Sept. 11–13, pp.
165
175
.https://www.researchgate.net/publication/289468869_Long_range_inspection_and_condition_monitoring_of_rails_using_guided_waves
70.
Bartoli
,
I.
,
di Scalea
,
F. L.
,
Fateh
,
M.
, and
Viola
,
E.
,
2005
, “
Modeling Guided Wave Propagation With Application to the Long-Range Defect Detection in Railroad Tracks
,”
NDT&E Int.
,
38
(
5
), pp.
325
334
.
71.
Loveday
,
P. W.
,
2012
, “
Guided Wave Inspection and Monitoring of Railway Track
,”
J. Nondestr. Eval.
,
31
(
4
), pp.
303
309
.
72.
Sanderson
,
R. M.
, and
Smith
,
S. D.
,
2003
, “
The Application of Finite Element Modelling to Guided Wave Testing Systems
,”
AIP Conf. Proc.
,
657
(1), pp.
256
263
.
73.
Gharaibeh
,
Y.
,
Sanderson
,
R.
,
Mudge
,
P.
,
Ennaceur
,
C.
, and
Balachandran
,
W.
,
2011
, “
Investigation of the Behaviour of Selected Ultrasonic Guided Wave Modes to Inspect Rails for Long-Range Testing and Monitoring
,”
J. Rail Rapid Transit
,
225
(
3
), pp.
311
324
.
74.
Campos-Castellanos
,
C.
,
Gharaibeh
,
Y.
,
Mudge
,
P.
, and
Kappatos
,
V.
,
2011
, “
The Application of Long Range Ultrasonic Testing (LRUT) for Examination of Hard to Access Areas on Railway Tracks
,”
Fifth IET Conference on Railway Condition Monitoring and Non-Destructive Testing
(
RCM
), Derby, UK, Nov. 29–30, pp.
1
7
.
75.
Moustakidis
,
S.
,
Kappatos
,
V.
,
Karlsson
,
P.
,
Selcuk
,
C.
,
Gan
,
T. H.
, and
Hrissagis
,
K.
,
2014
, “
An Intelligent Methodology for Railways Monitoring Using Ultrasonic Guided Waves
,”
J. Nondestr. Eval.
,
33
(
4
), pp.
694
710
.
76.
Loveday
,
P. W.
, and
Long
,
C. S.
,
2014
, “
Long Range Guided Wave Defect Monitoring in Rail Track
,”
AIP Conf. Proc.
,
1581
(
1
), pp.
179
185
.http://dx.doi.org/10.1063/1.4864818
77.
Yan
,
F.
,
Qi
,
K.
,
Rose
,
J. L.
, and
Weiland
,
H.
,
2010
, “
Delamination Defect Detection Using Ultrasonic Guided Waves in Advanced Hybrid Structural Elements
,”
AIP Conf. Proc.
,
1211
(
1
), pp.
2044
2051
.http://dx.doi.org/10.1063/1.3362372
78.
Sicard
,
R.
, and
Serhan
,
H.
,
2007
, “
Defect Detection and Imaging Using Focused Ultrasonic Guided Waves
,”
AIP Conf. Proc.
,
894
(1), pp.
185
192
.
79.
Hesse
,
D.
, and
Cawley
,
P.
,
2007
, “
Detection of Critical Defects in Rails Using Ultrasonic Surface Waves
,”
AIP Conf. Proc.
,
894
(
1
), pp.
1413
1420
.
80.
Hayashi
,
T.
,
2007
, “
Guided Wave Inspection for Bottom Edge of Rails
,”
Rev. Prog. Quant. Nondestr. Eval.
,
894
(1), pp.
169
176
.
81.
Teidj
,
S.
,
Khamlichi
,
A.
,
Driouach
,
A.
, and
Limam
,
A.
,
2016
, “
Detection of Defects in Rails by Means of Guided Waves
,”
Aust. J. Basic Appl. Sci.
,
7
(
8
), pp.
580
588
.
82.
Lanza di Scalea
,
F.
,
Bartoli
,
I.
,
Rizzo
,
P.
, and
McNamara
,
J.
,
2004
, “
On-Line High-Speed Rail Defect Detection: Part I
,” Federal Railroad Administration, Washington, DC, Report No.
DOT/FRA/ORD-04/16
.https://www.fra.dot.gov/Elib/Document/1285
83.
Coccia
,
S.
,
Phillips
,
R.
,
Bartoli
,
I.
,
Salamone
,
S.
,
Rizzo
,
P.
, and
Lanza di Scalea
,
F.
,
2012
, “
On-Line High-Speed Rail Defect Detection: Part II
,” Federal Railroad Administration, Washington, DC, Report No.
DOT/FRA/ORD-12/02
.https://www.fra.dot.gov/Elib/Document/2551
84.
Kenderian
,
S.
,
Djordjevic
,
B. B.
, and
Green
,
R. E.
,
2003
, “
Sensitivity of Point and Line Source Laser Generated Acoustic Wave to Surface Flaws
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
50
(
8
), pp.
1057
1064
.
85.
Edwards
,
R. S.
,
Dutton
,
B.
,
Clough
,
A. R.
, and
Rosli
,
M. H.
,
2012
, “
Scanning Laser Source and Scanning Laser Detection Techniques for Different Surface Crack Geometries
,”
AIP Conf. Proc.
,
1430
(
1
), pp.
251
258
.http://dx.doi.org/10.1063/1.4716237
86.
Edwards
,
R. S.
,
Clough
,
A. R.
,
Rosli
,
M. H.
,
Hernandez-Valle
,
J. F.
, and
Dutton
,
B.
,
2012
, “
Detection and Characterization of Surface Cracking Using Scanning Laser Techniques
,”
AIP Conf. Proc.
,
1433
(
1
), pp.
563
566
.
87.
Aindow
,
A. M.
,
Dewhurst
,
R. J.
,
Palmer
,
S. B.
, and
Scruby
,
C. B.
,
1984
, “
Laser-Based Non-Destructive Testing Techniques for the Ultrasonic Characterization of Subsurface Flaws
,”
NDT Int.
,
17
(
6
), pp.
329
335
.
88.
Kromine
,
A. K.
,
Fomitchov
,
P. A.
,
Krishnaswamy
,
S.
, and
Achenbach
,
J. D.
,
2001
, “
Detection of Subsurface Defects Using Laser Based Technique
,”
AIP Conf. Proc.
,
557
(1), pp.
1612
1617
.
89.
Achenbach
,
J. D.
,
2002
, “
Modeling for Quantitative Non-Destructive Evaluation
,”
Ultrasonics
,
40
(
1
), pp.
1
10
.
90.
Yashiro
,
S.
,
Takatsubo
,
J.
, and
Toyama
,
N.
,
2007
, “
An NDT Technique for Composite Structure Using Visualized Lamb Wave Propagation
,”
Compos. Sci. Technol.
,
67
(
15
), pp.
3202
3208
.
91.
Cavuto
,
A.
,
Martarelli
,
M.
,
Pandarese
,
G.
,
Revel
,
G. M.
, and
Tomasini
,
E. P.
,
2016
, “
Train Wheel Diagnostic by Laser Ultrasonic
,”
Measurement
,
80
, pp.
99
107
.
92.
Cavuto
,
A.
,
Martarelli
,
M.
,
Pandarese
,
G.
,
Revel
,
G. M.
, and
Tomakin
,
E. P.
,
2015
, “
Experimental Investigation by Laser Ultrasonics for High-Speed Train Axle
,”
Ultrasonics
,
55
, pp.
48
57
.
93.
Malik
,
M. S.
,
Cavuto
,
A.
,
Martarelli
,
M.
,
Pandarese
,
G.
, and
Revel
,
G. M.
,
2014
, “
Reliability Analysis of Laser Ultrasonics for Train Axle Diagnostics Based on Model Assisted POD Curves
,”
AIP Conf. Proc.
,
1600
(
1
), pp.
396
404
.
94.
Zhang
,
Q.
,
Shi
,
S.
, and
Chen
,
W.
,
2015
, “
An Electromechanical Coupling Model of a Longitudinal Vibration Type Piezoelectric Ultrasonic Transducer
,”
Ceram. Int.
,
41
(
S1
), pp.
S638
S644
.
95.
Sun
,
G.
, and
Zhou
,
Z.
,
2014
, “
Application of Laser Ultrasonic Technique for Non-Contact Detection of Drilling-Induced Delamination in Aeronautical Composite Components
,”
Optik
,
125
(
14
), pp.
3608
3611
.
96.
Hayashi
,
T.
,
Kojika
,
Y.
,
Kataoka
,
K.
, and
Takikawa
,
M.
,
2008
, “
Visualization of Guided Wave Propagation With Laser Doppler Vibrometer Scanning on Curved Surface
,”
AIP Conf. Proc.
,
975
(
1
), pp.
178
184
.http://dx.doi.org/10.1063/1.2902654
97.
Yashiro
,
S.
,
Takatsubo
,
J.
,
Miyauchi
,
H.
, and
Toyama
,
N.
,
2008
, “
A Novel Technique for Visualizing Ultrasonic Waves in General Solid Media by Pulsed Laser Scan
,”
NDT&E Int.
,
41
(
2
), pp.
137
144
.
98.
Aussel
,
J. D.
, and
Monchalin
,
J. P.
,
1989
, “
Measurement of Ultrasound Attenuation by Laser Ultrasonics
,”
J. Appl. Phys.
,
65
(
8
), pp.
2918
2922
.
99.
Ochiai
,
M.
,
Miura
,
T.
, and
Yamamoto
,
S.
,
2008
, “
Laser Ultrasonic Testing and Its Application to Nuclear Reactor Internals
,”
AIP Conf. Proc.
,
975
(1), pp.
231
238
.
100.
Pan
,
Y.
,
Chigarev
,
N.
, and
Audoin
,
B.
,
2010
, “
Bulk Waves Excited by a Laser Line Pulse in Two Layered Cylinder
,”
J. Appl. Phys.
,
107
(
2
), p.
023527
.
101.
Kozhushko
,
V. V.
, and
Hess
,
P.
,
2007
, “
Non-Destructive Evaluation of Microcracks by Laser-Induced Focused Ultrasound
,”
Appl. Phys. Lett.
,
91
(
22
), p.
224107
.
102.
Fiedler
,
C. J.
,
2001
, “
Laser Based Ultrasound Technology Assessment
,”
AIP Conf. Proc.
,
577
(
1
), pp.
308
315
.
103.
Kuger
,
S. E.
, and
Lord
,
M.
,
2007
, “
Ultrasonic Wave Generation by Laser on Different Metal Surfaces
,”
AIP Conf. Proc.
,
894
(1), pp.
209
216
.
104.
Jhang
,
K.
,
Kim
,
H.
,
Kim
,
H.
, and
Ha
,
Y.
,
2003
, “
Laser Generation of Focused Ultrasonic Wave
,”
AIP Conf. Proc.
,
657
(1), pp.
305
310
.
105.
Chen
,
J.
, and
Bond
,
L. J.
,
2015
, “
Assessment of Ultrasonic NDT Methods for High-Speed Rail Inspections
,”
AIP Conf. Proc.
,
1650
(1), pp.
605
614
.
106.
Zhao
,
Y.
,
Sun
,
J. H.
,
Ma
,
J.
,
Liu
,
S.
,
Guo
,
R.
,
Song
,
J. F.
, and
Jia
,
Z. Q.
,
2014
, “
Application of the Hybrid Laser Ultrasonic Method in Rail Inspection
,”
Insight
,
56
(
7
), pp.
360
366
.
107.
Monchalin
,
J. P.
,
2004
, “
Laser Ultrasonics: From the Laboratory to Industry
,”
AIP Conf. Proc.
,
700
(1), pp.
3
31
.
108.
Park
,
J.
,
Lim
,
J.
,
Cho
,
Y.
, and
Krishnaswamy
,
S.
,
2015
, “
Study on Laser-Based Ultrasonic Technique by the Use of Guided Wave Tomographic Imaging
,”
AIP Conf. Proc.
,
1650
(1), pp.
274
279
.
109.
Yang
,
L.
, and
Ume
,
I. C.
,
2014
, “
Application of 3-D FFT in Laser Ultrasonic NDT Technique
,”
AIP Conf. Proc.
,
1581
(
1
), pp.
380
388
.
110.
Scruby
,
C. B.
, and
Drain
,
L. E.
,
1990
,
Laser Ultrasonics: Techniques and Applications
,
Taylor & Francis
,
Abingdon, UK
.
111.
Bayissa
,
W. L.
, and
Dhanasekar
,
M.
,
2011
, “
High-Speed Detection of Broken Rails, Rail Cracks and Surface Faults
,” CRC for Rail Innovation, Brisbane, Australia, Project No. P4.116.
112.
Clark
,
R.
,
2004
, “
Rail Flaw Detection: Overview and Needs for Future Developments
,”
NDT&E Int.
,
37
(
2
), pp.
111
118
.
113.
Hansen
,
J.
, and
Calvert
,
J.
,
2002
, “
Eddy Current Testing, A Solution to Detecting Rolling Contact Fatigue in Rail?
,”
International Conference Railway Engineering
(
ICRE
), London, July 3–4, pp.
1
12
.https://trid.trb.org/view.aspx?id=745240
114.
Rowshandel
,
H.
,
Nicholson
,
G. L.
,
Davis
,
C. L.
, and
Roberts
,
C.
,
2014
, “
A Combined Threshold and Signature Match Method for the Automatic Detection of Rail RCF Cracks Using an ACFM Sensor
,”
Sixth IET Conference on Railway Condition Monitoring
(
RCM
), Birmingham, UK, Sept. 17–18, pp.
1
6
.
115.
Papaelias
,
M.
,
Kerkyras
,
S.
,
Papaelias
,
F.
, and
Graham
,
K.
,
2012
, “
The Future of Rail Inspection Technology and the INTERAIL FP7 Project
,”
51st Annual Conference of the British Institute of Non-Destructive Testing
(
BINDT
), Northamptonshire, UK, Sept. 11–13, pp.
148
156
.https://www.researchgate.net/publication/289469062_The_future_of_rail_inspection_technology_and_the_INTERAIL_FP7_project
116.
Kumar
,
S.
,
2006
, “
Study of Rail Breaks: Associated Risks and Maintenance Strategies
,” Luleå University of Technology, Luleå, Sweden, Technical Report No. 2006:07.
117.
INNOTRACK, 2015, “
Rail Inspection Technologies
,” University of Birmingham, Birmingham, UK, accessed Aug. 8, 2015, https://www.yumpu.com/en/document/view/3565199/innotrack-d441-rail-inspection-technologies
118.
Verkhoglyad
,
A. G.
,
Kuropyatnik
,
I. N.
,
Bazovkin
,
V. M.
, and
Kuryshev
,
G. L.
,
2008
, “
Infrared Diagnostics of Cracks in Railway Carriage Wheels
,”
Russ. J. Nondestr. Test.
,
44
(
10
), pp.
664
668
.
You do not currently have access to this content.