A novel output-feedback controller for uncertain single-input single-output (SISO) nonaffine nonlinear systems is proposed using high-order sliding mode (HOSM) observer, which is a robust exact finite-time convergent differentiator. The proposed controller utilizes (n + 1)th-order HOSM observer to cancel the uncertainty and disturbance where n is the relative degree of the controlled system. As a result, the control law has an extremely simple form of linear in the differentiator states. It is required no separate sliding-mode controller or universal approximators such as neural networks (NNs) or fuzzy logic systems (FLSs) that are adaptively tuned online. The proposed controller guarantees finite time stability of the output tracking error.

References

References
1.
Wang
,
W.-Y.
,
Chan
,
M.-L.
,
Hsu
,
C.-C. J.
, and
Lee
,
T.-T.
,
2002
, “
H∞ Tracking-Based Sliding Mode Control for Uncertain Nonlinear Systems via an Adaptive Fuzzy-Neural Approach
,”
IEEE Trans. Syst., Man, Cybern.-Part B
,
32
(
4
), pp.
483
492
.
2.
Park
,
J.-H.
,
Huh
,
S.-H.
,
Kim
,
S.-H.
,
Seo
,
S.-J.
, and
Park
,
G.-T.
,
2005
, “
Direct Adaptive Controller for Nonaffine Nonlinear Systems Using Self-Structuring Neural Networks
,”
IEEE Trans. Neural Networks
,
16
(
2
), pp.
414
422
.
3.
Park
,
J.-H.
,
Park
,
G.-T.
,
Kim
,
S.-H.
, and
Moon
,
C.-J.
,
2005
, “
Direct Adaptive Self-Structuring Fuzzy Controller for Nonaffine Nonlinear Systems
,”
Fuzzy Sets Syst.
,
153
(
3
), pp.
429
445
.
4.
Park
,
J.-H.
,
Kim
,
S.-H.
, and
Moon
,
C.-J.
,
2009
, “
Adaptive Neural Control for Strict-Feedback Nonlinear Systems Without Backstepping
,”
IEEE Trans. Neural Networks
,
20
(
7
), pp.
1204
1209
.
5.
Na
,
J.
,
Ren
,
X.
, and
Zheng
,
D.
,
2013
, “
Adaptive Control for Nonlinear Pure-Feedback Systems With High-Order Sliding Mode Observer
,”
IEEE Trans. Neural Networks Learn. Syst.
,
24
(
3
), pp.
370
382
.
6.
Shen
,
Q.
,
Zhang
,
T.
, and
Lim
,
C.-C.
,
2014
, “
Novel Neural Control for a Class of Uncertain Pure-Feedback Systems
,”
IEEE Trans. Neural Networks Learn. Syst.
,
86
(
5
), pp.
912
922
.
7.
Wang
,
H.
,
Chen
,
B.
,
Lin
,
C.
, and
Sun
,
Y.
,
2016
, “
Observer-Based Adaptive Neural Control for a Class of Nonlinear Pure-Feedback Systems
,”
Neurocomputing
,
171
, pp.
1517
1523
.
8.
Levant
,
A.
,
2003
, “
Higher-Order Sliding Modes, Differentiation and Output-Feedback Control
,”
Int. J. Control
,
76
(
9–10
), pp.
924
941
.
9.
Levant
,
A.
,
2005
, “
Homegeneity Approach to High-Order Sliding Mode Design
,”
Automatica
,
41
(
5
), pp.
823
830
.
10.
Levant
,
A.
, and
Alelishvil
,
L.
,
2007
, “
Integral High-Order Sliding Modes
,”
IEEE Trans. Autom. Control
,
52
(
7
), pp.
1278
1282
.
11.
Dinuzzo
,
F.
, and
Ferrara
,
A.
,
2010
, “
Higher Order Sliding Mode Controllers With Optimal Reaching
,”
IEEE Trans. Autom. Control
,
54
(
9
), pp.
2126
2136
.
12.
Feng
,
Y.
,
Han
,
F.
, and
Yu
,
X.
,
2014
, “
Chattering Free Full-Order Sliding-Mode Control
,”
Automatica
,
50
(
4
), pp.
1310
1314
.
13.
Dadras
,
S.
, and
Momeni
,
H. R.
,
2014
, “
Fractional-Order Dynamic Output Feedback Sliding Mode Control Design for Robust Stabilization of Uncertain Fractional-Order Nonlinear Systems
,”
Asian J. Control
,
16
(
2
), pp.
1
9
.
14.
Ding
,
S.
,
Levant
,
A.
, and
Li
,
S.
,
2016
, “
Simple Homogeneous Sliding-Mode Controller
,”
Automatica
,
67
, pp.
22
32
.
15.
Incremona
,
G. P.
,
Rubagotti
,
M.
, and
Ferrara
,
A.
,
2017
, “
Sliding Mode Control of Constrained Nonlinear System
,”
IEEE Trans. Autom. Control
,
62
(
6
), pp.
2965
2972
.
16.
Song
,
J.
,
Niu
,
Y.
, and
Zou
,
Y.
,
2017
, “
Finite-Time Stabilization via Sliding Mode Control
,”
IEEE Trans. Autom. Control
,
62
(
3
), pp.
1478
1483
.
17.
Oliveira
,
T. R.
,
Estrada
,
A.
, and
Fridman
,
L. M.
,
2017
, “
Global and Exact Differentiator With Dynamic Gains for Output-Feedback Sliding Mode Control
,”
Automatica
,
81
, pp.
156
163
.
18.
Levant
,
A.
, and
Livne
,
M.
,
2012
, “
Exact Differentiation of Signals With Unbounded Higher Derivatives
,”
IEEE Trans. Autom. Control
,
57
(
4
), pp.
1076
1080
.
19.
Khalil
,
H. K.
,
1992
,
Nonlinear Systems
,
Macmillan Publishing
, New York.
20.
Hunter
,
J. D.
,
2007
, “
Matplotlib: A 2D Graphics Environment
,”
Comput. Sci. Eng.
,
9
(
3
), pp.
90
95
.
You do not currently have access to this content.