This paper considers the problem on formation tracking control of second-order multi-agent systems (MASs) with communication time-varying delay. Sufficient conditions on the directed interaction topology and existence of the feedback gains to ensure the desired control are presented. Through choosing two augmented Lyapunov–Krasovskii (L–K) functionals and using some novel Wirtinger-based integral inequalities, the previously ignored information can be reconsidered and the application area of derived results can be greatly extended. Moreover, a novel constructive technique is given to compute out the controller gain by resorting to solving the achieved linear matrix inequalities (LMIs). Finally, a numerical example with comparisons and simulations is provided to illustrate the obtained results.

References

1.
Mehrabian
,
A. R.
, and
Khorasani
,
K.
,
2015
, “
Cooperative Optimal Synchronization of Networked Uncertain Nonlinear Euler-Lagrange Heterogeneous Multi-Agent Systems With Switching Topologies
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
4
), p.
041006
.
2.
Olfati-Saber
,
R.
,
2006
, “
Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory
,”
IEEE Trans. Autom. Control
,
51
(
3
), pp.
401
420
.
3.
Olfati-Saber
,
R.
, and
Murray
,
R. M.
,
2002
, “
Distributed Cooperative Control of Multiple Vehicle Formation Using Structural Potential Functions
,”
IFAC Proc.
,
35
(
1
), pp.
495
500
.
4.
Olfati-Saber
,
R.
, and
Jalalkamali
,
R.
,
2012
, “
Coupled Distributed Estimation and Control for Mobile Sensor Networks
,”
IEEE Trans. Autom. Control
,
57
(
10
), pp.
2609
2614
.
5.
Ding
,
C. Y.
,
Li
,
J. M.
, and
Li
,
J. S.
,
2017
, “
Distributed Optimal Consensus for Multi-Agent Systems Under Independent Position and Velocity Topology
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
10
), p.
101012
.
6.
Olfati-Saber
,
R.
, and
Murray
,
R. M.
,
2004
, “
Consensus Problem in Networks With Switching Topology and Time-Delays
,”
IEEE Trans. Autom. Control
,
49
(
9
), pp.
1520
1533
.
7.
Ma
,
C.
, and
Zhang
,
J.
,
2010
, “
Necessary and Sufficient Conditions for Consensusability of Linear Multi-Agent Systems
,”
IEEE Trans. Autom. Control
,
55
(
5
), pp.
1263
1268
.
8.
Li
,
W.
,
Chen
,
Z.
, and
Liu
,
Z.
,
2014
, “
Formation Control for Nonlinear Multi-Agent Systems by Robust Output Regulation
,”
Neurocomputing
,
140
, pp.
114
120
.
9.
Sun
,
X.
, and
Cassandras
,
C. G.
,
2016
, “
Optimal Dynamic Formation Control of Multi-Agent Systems in Constrained Environments
,”
Automatica
,
73
, pp.
169
179
.
10.
Liu
,
Y.
, and
Geng
,
Z.
,
2015
, “
Finite-Time Formation Control for Linear Multi-Agent Systems: A Motion Planning Approach
,”
Syst. Control Lett.
,
85
(
9
), pp.
54
60
.
11.
Meng
,
F.
,
Shi
,
Z.
, and
Zhong
,
Y.
,
2016
, “
Distributed Formation Control of Singular Multi-Agent Systems
,”
IEEE International Conference on Control and Automation
(
ICCA
), Kathmandu, Nepal, June 1–3, pp.
915
920
.
12.
Ebihara
,
Y.
,
Peaucelle
,
D.
, and
Arzelier
,
D.
,
2014
, “
Efficient Convergence Rate Analysis of Multi-Agent Positive Systems Under Formation Control
,”
IFAC Proc.
,
47
(
3
), pp.
3790
3796
.
13.
Jafarian
,
M.
,
Vos
,
E.
, and
Persis
,
C. D.
,
2015
, “
Formation Control of a Multi-Agent System Subject to Coulomb Friction
,”
Automatica
,
61
, pp.
253
262
.
14.
Akiyama
,
K.
,
Sekiguchi
,
K.
, and
Nonaka
,
K.
,
2016
, “
Robust Formation Control Applying Model Predictive Control to Multi-Agent System by Sharing Disturbance Information With UAVs
,”
55th Annual Conference of the Society of Instrument and Control Engineers
(
SICE
), Tsukuba, Japan, Sept. 20–23, pp.
627
632
.
15.
Ge
,
X.
, and
Han
,
Q. L.
,
2017
, “
Distributed Formation Control of Networked Multi-Agent Systems Using a Dynamic Event-Triggered Communication Mechanism
,”
IEEE Trans. Ind. Electron.
,
64
(
10
), pp.
8118
8127
.
16.
Qin
,
L.
,
He
,
X.
, and
Zhou
,
D.
,
2017
, “
Distributed Proportion-Integration-Derivation Formation Control for Second-Order Multi-Agent Systems With Communication Time Delays
,”
Neurocomputing
,
267
, pp.
271
282
.
17.
Dong
,
X.
,
Xi
,
J.
, and
Lu
,
G.
,
2014
, “
Formation Control for High-Order Linear Time-Invariant Multi-Agent Systems With Time Delays
,”
IEEE Trans. Control Network Syst.
,
1
(
3
), pp.
232
240
.
18.
Xiao
,
Q.
,
Wang
,
Y. N.
, and
Mao
,
J. X.
,
2014
, “
Nonlinear Control for Multi-Agent Formations With Delays in Noisy Environments
,”
Acta Autom. Sin.
,
40
(
12
), pp.
2959
2967
.
19.
Gonzalez
,
A.
, and
Aranda
,
M.
,
2017
, “
Time Delay Compensation Based on Smith Predictor in Multi-Agent Formation Control
,”
IFAC-PaperOnline
,
50
(
1
), pp.
11645
11651
.
20.
Li
,
P.
,
Qin
,
K. Y.
, and
Pu
,
H. P.
,
2017
, “
Distributed Robust Time-Varying Formation Control for Multiple Unmanned Aerial Vehicles Systems With Time-Delay
,”
IEEE Chinese Control and Decision Conference
(
CCDC
), Chongqing, China, May 28–30, pp.
1539
1544
.
21.
Mahmood
,
A.
, and
Kim
,
Y.
,
2015
, “
Leader-Following Formation Control of Quadcopters With Heading Synchronization
,”
Aerosp. Sci. Technol.
,
47
, pp.
68
74
.
22.
Ding
,
Y.
,
Wei
,
C.
, and
Bao
,
S.
,
2014
, “
Decentralized Formation Control for Multiple UAVs Based on Leader-Following Consensus With Time-Varying Delays
,”
IEEE Chinese Automation Congress
(
CAC
), Changsha, China, Nov. 7–8, pp.
426
431
.
23.
Luo
,
H. F.
, and
Peng
,
S. G.
,
2017
, “
Formation Control for Nonlinear Multi-Agent Systems With Diverse Time-Varying Delays and Uncertain Topologies
,”
IEEE Chinese Control and Decision Conference
(
CCDC
), Chongqing, China, May 28–30, pp.
1730
1736
.
24.
Li
,
W.
,
Chen
,
Z.
, and
Liu
,
Z.
,
2014
, “
Robust H∞ Formation Control for Multi-Agent Systems With Nonlinear Dynamics and Time-Varying Delay
,”
IEEE Chinese Control Conference
(
CCC
), Nanjing, China, July 28–30, pp.
1144
1149
.
25.
Xue
,
D.
,
Yao
,
J.
, and
Wang
,
J.
,
2013
, “
Formation Control of Multi-Agent Systems With Stochastic Switching Topology and Time-Varying Communication Delays
,”
IET Control Theory Appl.
,
7
(
13
), pp.
1689
1698
.
26.
Haeri
,
M.
, and
Khani
,
F.
,
2017
, “
Constrained Tracking Control for Nonlinear Systems
,”
ISA Trans.
,
70
, pp.
64
72
.
27.
Mu
,
C.
,
Sun
,
C.
, and
Wang
,
D.
,
2017
, “
Adaptive Tracking Control for a Class of Continuous-Time Uncertain Nonlinear Systems Using the Approximate Solution of HJB Equation
,”
Neurocomputing
,
260
, pp.
432
442
.
28.
Xue
,
L.
,
Zhang
,
W.
, and
Lin
,
Y.
,
2016
, “
Global Output Tracking Control for High-Order Stochastic Nonlinear Systems With SISS Inverse Dynamics and Time-Varying Delays
,”
J. Franklin Inst.
,
353
(
13
), pp.
3249
3270
.
29.
Hua
,
C. C.
,
Li
,
Y. F.
, and
Li
,
H. G.
,
2016
, “
Decentralized Output Feedback Adaptive NN Tracking Control of Interconnected Nonlinear Time-Delay Systems With Prescribed Performance
,”
Neurocomputing
,
174
, pp.
885
896
.
30.
Pan
,
H.
,
Sun
,
W.
, and
Jing
,
X.
,
2017
, “
Adaptive Tracking Control for Active Suspension Systems With Non-Ideal Actuators
,”
J. Sound Vib.
,
399
, pp.
2
20
.
31.
Deng
,
K. B.
,
Wang
,
R. X.
, and
Li
,
C. L.
,
2016
, “
Tracking Control for a Ten-Ring Chaotic System With an Exponential Nonlinear Term
,”
Int. J. Light Electron Opt.
,
130
, pp.
576
583
.
32.
Liu
,
Y.
, and
Zhang
,
H.
,
2016
, “
ADP Based Optimal Tracking Control for a Class of Linear Discrete-Time System With Multiple Delays
,”
J. Franklin Inst.
,
353
(
9
), pp.
2117
2136
.
33.
Weiwei
,
Q.
,
Bing
,
H. E.
, and
Liu
,
G.
,
2016
, “
Robust Model Predictive Tracking Control of Hypersonic Vehicles in the Presence of Actuator Constraints and Input Delays
,”
J. Franklin Inst.
,
353
(
17
), pp.
4351
4367
.
34.
Hu
,
J.
,
Cao
,
J.
, and
Yuan
,
K.
,
2016
, “
Cooperative Tracking for Nonlinear Multi-Agent Systems With Hybrid Time-Delayed Protocol
,”
Neurocomputing
,
171
, pp.
171
178
.
35.
Han
,
L.
,
Dong
,
X. W.
, and
Li
,
Q.
,
2017
, “
Formation Tracking Control for Time-Delayed Multi-Agent Systems With Second-Order Dynamics
,”
Chin. J. Aeronautics
,
30
(
1
), pp.
348
357
.
36.
Dong
,
X. W.
,
Zhou
,
Y.
, and
Ren
,
Z.
,
2016
, “
Time-Varying Formation Tracking for Second-Order Multi-Agent Systems Subjected to Switching Topologies With Application to Quadrotor Formation Flying
,”
IEEE Trans. Ind. Electron.
,
64
(
6
), pp.
5014
5024
.
37.
Han
,
L.
,
Dong
,
X. W.
, and
Yi
,
K.
,
2017
, “
Circular Formation Tracking Control for Time-Delayed Second-Order Multi-Agent Systems With Multiple Leaders
,”
IEEE Guidance, Navigation and Control Conference
(
CGNCC
), Nanjing, China, Aug. 12–14, pp.
1648
1653
.
38.
Ge
,
M. F.
,
Guan
,
Z. H.
, and
Yang
,
C.
,
2016
, “
Time-Varying Formation Tracking of Multiple Manipulators Via Distributed Finite-Time Control
,”
Neurocomputing
,
202
, pp.
20
26
.
39.
Wang
,
P.
,
Li
,
C.
, and
Sun
,
Y.
,
2016
, “
State Feedback Control for Formation Keeping in Elliptical Orbits With Unknown Relative Perturbations
,”
IEEE Chinese Control Conference
(
CCC
), Chengdu, China, July 27–29, pp.
5660
5665
.
40.
Zeng
,
H.
,
He
,
Y.
, and
Wu
,
M.
,
2015
, “
New Results on Stability Analysis for Systems With Discrete Distributed Delay
,”
Automatica
,
63
, pp.
189
192
.
41.
Liu
,
Y.
,
Ju
,
H. P.
, and
Guo
,
B. Z.
,
2016
, “
Results on Stability of Linear Systems With Time Varying Delay
,”
IET Control Theory Appl.
,
11
(
1
), pp.
129
134
.
42.
Park
,
M.
,
Kwon
,
O.
,
Park
,
J. H.
, and
Lee
,
S.
,
2015
, “
Stability of Time-Delay Systems Via Wirtinger-Based Double Integral Inequality
,”
Automatica
,
55
, pp.
204
208
.
43.
Park
,
P.
,
Lee
,
W.
, and
Lee
,
S. Y.
,
2016
, “
Auxiliary Function-Based Integral Inequalities for Quadratic Functions and Their Applications to Time-Delay Systems
,”
J. Franklin Inst.
,
352
(
4
), pp.
1378
1396
.
44.
Hua
,
C. C.
,
Wu
,
S. S.
,
Yang
,
X.
, and
Guan
,
X. P.
,
2017
, “
Stability Analysis of Time-Delay Systems Via Free-Matrix-Based Double Integral Inequality
,”
Int. J. Syst. Sci.
,
48
(
2
), pp.
257
263
.
45.
Zhang
,
C. K.
,
Jiang
,
L.
,
Wu
,
M.
, and
Zeng
,
H. B.
,
2016
, “
Stability Analysis of Systems With Time-Varying Delay Via Relaxed Integral Inequalities
,”
Syst. Control Lett.
,
92
, pp.
52
61
.
46.
Shen
,
M. Q.
,
Yan
,
S.
, and
Zhang
,
G. M.
,
2016
, “
A New Approach to Event-Triggered Static Output Feedback Control of Networked Control Systems
,”
ISA Trans.
,
65
(
4
), pp.
468
474
.
47.
Li
,
T.
,
Wang
,
T.
,
Song
,
A. G.
, and
Fei
,
S. M.
,
2010
, “
Delay-Derivative-Dependent Stability for Delayed Neural Networks With Unbounded Distributed Delay
,”
IEEE Trans. Neural Networks
,
21
, pp.
1365
1371
.
You do not currently have access to this content.