The present study is focused on the construction of a well-performing pilot controlled proportional flow valve with internal displacement-flow feedback. A novel control strategy for the valve is proposed in which the flow rate through the valve is directly controlled. The linear mathematical model for the valve is established and a fuzzy proportional–integral–derivative (PID) controller is designed for the flow control. In order to obtain the flow rate used as feedback rapidly and accurately in real-time, back propagation neural network (BPNN) is employed to predict the flow rate through the valve with the pressure drop through the main orifice and main valve opening, and the predicted value is used as the feedback. Both simulation and experimental results show that the predicted value obtained by BPNN is reliable and available for the feedback. The proposed control strategy is effective with which the flow rate through the valve remains almost constant when the pressure drop through the main orifice increases and the valve can be applied to the conditions where the independence of flow rate and load is required. For the valve with the proposed control strategy, the nonlinearity is less than 5.3%, the hysteresis is less than 4.2%, and the bandwidth is about 16 Hz. The static and dynamic characteristics are reasonable and acceptable.

References

1.
Leati
,
E.
,
Gradl
,
C.
, and
Scheidl
,
R.
,
2016
, “
Modeling of a Fast Plate Type Hydraulic Check Valve
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
6
), p.
061002
.
2.
Wiens
,
T.
,
2016
, “
Improving Performance of a Switched Inertance Buck Converter Via Positioning of Reservoir Flow Valve
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
12
), p.
124502
.
3.
Gad
,
O.
,
2016
, “
Modeling and Simulation of the Steady-State and Transient Performance of a Three-Way Pressure Reducing Valve
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
3
), p.
031001
.
4.
Saha
,
B. K.
,
Gangopadhyay
,
T.
, and
Sanyal
,
D.
,
2016
, “
Pilot-Dynamics Coupled Finite-Volume Analysis of Main Flow Transients Through a Pneumatic Pressure-Regulating Valve
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
2
), p.
021008
.
5.
Le
,
M. Q.
,
Pham
,
M. T.
,
Moreau
,
R.
,
Simon
,
J. P.
, and
Redarce
,
T.
,
2011
, “
Force Tracking of Pneumatic Servo Systems Using On∕Off Solenoid Valves Based on a Greedy Control Scheme
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
5
), p.
054505
.
6.
Kuehnlein
,
M.
,
Liermann
,
M.
,
Ewald
,
J.
, and
Murrenhoff
,
H.
,
2012
, “
Adjustable Flow-Control Valve for the Self-Energising Electro-Hydraulic Brake
,”
Int. J. Fluid Power
,
13
(
2
), pp.
5
14
.
7.
Quan
,
L.
,
Xu
,
X.
,
Yan
,
Z.
, and
Zhang
,
X.
,
2010
, “
A New Kind of Pilot Controlled Proportional Direction Valve With Internal Flow Feedback
,”
Chin. J. Mech. Eng.
,
23
(
1
), p.
6065
.
8.
Park
,
S. H.
,
2009
, “
Development of a Proportional Poppet-Type Water Hydraulic Valve
,”
Proc. Inst. Mech. Eng., Part C
,
223
(
9
), pp.
2009
2107
.
9.
Andersson
,
B. R.
,
1984
, “
On the Valvistor; a Proportionally Controlled Seat Valve
,” Ph.D. dissertations, Linkoping University, Linkoping, Swedan.
10.
Zhang
,
R.
,
Alleyne
,
A. G.
, and
Prasetiawan
,
E. A.
,
2002
, “
Performance Limitations of a Class of Two-Stage Electro-Hydraulic Flow Valves
,”
Int. J. Fluid Power
,
3
(
1
), pp.
47
53
.
11.
Prasetiawan
,
E.
,
Zhang
,
R.
, and
Alleyne
,
A.
,
2001
, “
Fundamental Performance Limitations for a Class of Electronic Two-Stage Proportional Flow Valves
,”
American Control Conference
(
ACC
), Arlington, TX, June 25–27, pp.
3955
3960
.
12.
Pan
,
M.
,
Johnston
,
N.
,
Robertson
,
J.
,
Plummer
,
A.
,
Hillis
,
A.
, and
Yang
,
H.
,
2015
, “
Experimental Investigation of a Switched Inertance Hydraulic System With a High-Speed Rotary Valve
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
12
), p.
121003
.
13.
Anderson
,
R. T.
, and
Li
,
P. Y.
,
2002
, “
Mathematical Modeling of a Two Spool Flow Control Servovalve Using a Pressure Control Pilot
,”
ASME J. Dyn. Syst. Meas. Control
,
124
(
3
), pp.
420
427
.
14.
Johansen
,
P.
,
Roemer
,
D. B.
,
Andersen
,
T. O.
, and
Pedersen
,
H. C.
,
2017
, “
Discrete Linear Time Invariant Analysis of Digital Fluid Power Pump Flow Control
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
10
), p.
101007
.
15.
Eriksson
,
B.
,
Andersson
,
B. R.
, and
Palmberg
,
J. O.
,
2007
, “
The Dynamic Properties of a Poppet Type Hydraulic Flow Amplifier
,”
Tenth Scandinavian International Conference on Fluid Power
, Tampere, Finland, May 21–23, pp.
161
178
.http://liu.diva-portal.org/smash/record.jsf?pid=diva2%3A440&dswid=-6162
16.
Eriksson
,
B.
,
Larsson
,
J.
, and
Palmberg
,
J. O.
,
2007
, “
A Novel Valve Concept Including the Valvistor Poppet Valve
,”
Tenth Scandinavian International Conference on Fluid Power
, Tampere, Finland, May 21–23, pp.
355
364
.https://www.dlib.si/stream/URN:NBN:SI:DOC-OD2I633K/8cf9afa6-937d-4cc5-bdc3-d42ffc5343ec/PDF
17.
Huang
,
J.
,
Dai
,
J.
,
Quan
,
L.
, and
Lan
,
Y.
,
2017
, “
Performance of Proportional Flow Valve With Pilot Pressure Drop-Spool Opening Compensation
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
1
), p.
011009
.
18.
Hao
,
Y.
,
Quan
,
L.
, and
Huang
,
J.
,
2015
, “
Research on the Performance of Electro-Hydraulic Proportional Flow Valve Controlled by Pilot Pump
,”
Proc. Inst. Mech. Eng., Part E
,
231
(
4
), pp.
1989
1996
.
19.
He
,
S.
, and
Sepehri
,
N.
,
1999
, “
Modeling and Prediction of Hydraulic Servo Actuators With Neural Networks
,”
American Control Conference
(
ACC
), San Diego, CA, June 2–4, pp.
3708
3712
.
20.
Cao
,
M.
,
Wang
,
K. W.
,
Devries
,
L.
,
Fujii
,
Y.
,
Tobler
,
W. E.
,
Pietron
,
G. M.
,
Tibbles
,
T.
, and
McCallum
,
J.
,
2003
, “
Steady-State Hydraulic Valve Fluid Field Estimator Based on Non-Dimensional Artificial Neural Network (NDANN)
,”
ASME J. Comput. Inf. Sci. Eng.
,
4
(
3
), pp.
257
270
.
21.
Xu
,
X. P.
,
Burton
,
R. T.
, and
Sargent
,
C. M.
,
1996
, “
Experimental Identification of a Flow Orifice Using a Neural Network and the Conjugate Gradient Method
,”
ASME J. Dyn. Syst. Meas. Control
,
118
(
2
), pp.
272
277
.
22.
Sahu
,
B. K.
,
Pati
,
T. K.
,
Nayak
,
J. R.
,
Panda
,
S.
, and
Kar
,
S. K.
,
2016
, “
A Novel Hybrid LUS–TLBO Optimized Fuzzy-PID Controller for Load Frequency Control of Multi-Source Power System
,”
Int. J. Electr. Power Energy Syst.
,
74
(
1
), pp.
58
69
.
23.
Khodayari
,
M. H.
, and
Balochian
,
S.
,
2015
, “
Modeling and Control of Autonomous Underwater Vehicle (AUV) in Heading and Depth Attitude Via Self-Adaptive Fuzzy PID Controller
,”
J. Mar. Sci. Technol.
,
20
(
3
), pp.
559
578
.
24.
Costa
,
E. B. M.
, and
Serra
,
G. L. O.
,
2017
, “
Self-Tuning Robust Fuzzy Controller Design Based on Multiobjective Particle Swarm Optimization Adaptation Mechanism
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
7
), p.
071009
.
You do not currently have access to this content.