This paper considers a novel coupled state-dependent Riccati equation (SDRE) approach for systematically designing nonlinear quadratic regulator (NLQR) and H∞ control of mechatronics systems. The state-dependent feedback control solutions can be obtained by solving a pair of coupled SDREs, guaranteeing nonlinear quadratic optimality with inherent stability property in combination with robust type of disturbance reduction. The derivation of this control strategy is based on Nash's game theory. Both finite and infinite horizon control problems are discussed. An under-actuated robotic system, Furuta rotary pendulum, is used to examine the effectiveness and robustness of this novel nonlinear control approach.
Issue Section:
Research Papers
References
1.
Isidori
, A.
, 1995
, Nonlinear Control Systems
, 3rd ed., Springer
, London.2.
Utkin
, V. I.
, 1993
, “Sliding Mode Control Design Principles and Applications to Electric Drives
,” IEEE Trans. Ind. Electron.
, 40
(1
), pp. 23
–36
.3.
Hostettler
, J.
, and Wang
, X.
, 2015
, “Sliding Mode Control of A Permanent Magnet Synchronous Generator for Variable Speed Wind Energy Conversion Systems
,” American Control Conference
, Chicago, IL, July 1–3, pp. 4982
–4987
.4.
Slotine
, J.-J. E.
, and Li
, W.
, 1991
, Applied Nonlinear Control
, Prentice Hall
, Englewood Cliffs, NJ
.5.
Tao
, G.
, 2004
, Adaptive Control Design and Analysis
, Wiley
, Hoboken, NJ.6.
Sun
, W.
, Pan
, H.
, and Gao
, H.
, 2016
, “Filter-Based Adaptive Vibration Control for Active Vehicle Suspensions With Electrohydraulic Actuators
,” IEEE Trans. Veh. Technol.
, 65
(6
), pp. 4619
–4626
.7.
Pan
, H.
, Sun
, W.
, Gao
, H.
, and Yu
, J.
, 2015
, “Finite-Time Stabilization for Vehicle Active Suspension Systems With Hard Constraints
,” IEEE Trans. Intell. Transportation Syst.
, 16
(5
), pp. 2663
–2672
.8.
Pan
, H.
, Sun
, W.
, Gao
, H.
, and Jing
, X.
, 2016
, “Disturbance Observer-Based Adaptive Tracking Control With Actuator Saturation and Its Application
,” IEEE Trans. Autom. Sci. Eng.
, 13
(2
), pp. 868
–875
.9.
Van der Shaft
, A. J.
, 1993
, “Nonlinear State Space H∞ Control Theory
,” Birkhauser Perspectives in Control
, H. J.
Trentelman
and J. C.
Willems
, eds., Birkhauser, Boston, MA.10.
Doyle
, J. H.
, Glover
, K.
, Khargonekar
, P.
, and Francis
, B.
, 1989
, “State Solution to Standard H2 and H∞ Control Problems
,” IEEE Trans. Autom. Control
, 3
, pp. 831
–847
.11.
Glover
, K.
, and Doyle
, J. C.
, 1989
, “A State Space Approach to H-Infinity Optimal Control
,” Three Decades of Mathematical System Theory
, H
. Nijmeijer
and J. M.
Schumacher
, eds., Springer-Verlag
, Berlin
, pp.179
–218
.12.
Bernstein
, D. S.
, and Haddad
, W. M.
, 1989
, “LQG Control With an H∞ Performance Bound: A Riccati Equation Approach
,” IEEE Trans. Autom. Control
, 34
(3
), pp. 293
–305
.13.
Doyle
, J.
, Zhou
, K.
, Glover
, K.
, and Bodenheimer
, B.
, 1994
, “Mixed H2 and H∞ Performance Objectives—II: Optimal Control
,” IEEE Trans. Autom. Control
, 39
(8
), pp. 1575
–1587
.14.
Iglesias
, P. A.
, Mustafa
, D.
, and Glover
, K.
, 1990
, “Discrete Time H∞ Controllers Satisfying a Minimum Entropy Criterion
,” Syst. Control Lett.
, 14
(4
), pp. 275
–286
.15.
Mustafa
, D.
, and Glover
, K.
, 1990
, Minimum Entropy H∞ Control
(Lecture Notes in Control and Information Sciences, Vol. 146
), Springer
, Berlin
.16.
Khargonekar
, P. P.
, and Rotea
, M. A.
, 1991
, “Mixed H2-H∞ Control: A Convex Optimization Approach
,” IEEE Trans. Autom. Control
, 36
(7
), pp. 824
–837
.17.
Scherer
, C. W.
, 1995
, “Multi-Objective H2-H∞ Control
,” IEEE Trans. Autom. Control
, 40
(6
), pp. 1054
–1062
.18.
D. J. N.
, Limebeer
, B. D. O.
, Anderson
, B.
, and Hendel
, A.
, 1994
, “Nash Game Approach to the Mixed H2-H∞-Control Problem
,” IEEE Trans. Autom. Control
, 39
(1
), pp. 824
–839
.19.
Basar
, T.
, and Bernhard
, P.
, 1995
, H∞ Optimal Control and Related Minimax Design Problems — A Dynamic Game Approach
, 2nd ed., Birkhauser
, Boston, MA.20.
Chen
, X.
, and Zhou
, K.
, 2001
, “Multi-Objective H2-H∞-Control Design
,” SIAM J. Control Optim.
, 40
(2
), pp. 628
–660
.21.
Lin
, W.
, 1996
, “Mixed H2-H∞-Control for Nonlinear Systems
,” Int. J. Control
, 64
(5
), pp. 899
–922
.22.
Lin
, W.
, 1995
, “Mixed H2-H∞-Control for Nonlinear Systems
,” 34th IEEE Conference on Decision and Control
, New Orleans, LA, Dec. 13–15, pp. 333–338.23.
Lin
, W.
, and Byrnes
, C. I.
, 1994
, “Dissipativity, L2-Gain and H∞-Control for Discrete-Time Nonlinear Systems
,” American Control Conference
, Baltimore, MD, June 29–July 1, pp. 2257
–2260
.24.
Lin
, W.
, and Byrnes
, C. I.
, 1996
, “H∞-Control of Discrete-Time Nonlinear Systems
,” IEEE Trans. Autom. Control
, 41
(4
), pp. 494
–509
.25.
Lin
, W.
, and Byrnes
, C. I.
, 1995
, “Discrete-Time Nonlinear H∞ Control With Measurement Feedback
,” Automatica
, 31
(3
), pp. 419
–434
.26.
Huang
, Y.
, and Lu
, W.-M.
, 1996
, “Nonlinear Optimal Control: Alternatives to Hamilton-Jacobi Equation
,” 35th Conference on Decision and Control
(CDC
), Kobe, Japan, Dec. 13, pp. 3942
–3947
.27.
Wang
, X.
, Yaz
, E. E.
, and Yaz
, Y. I.
, 2010
, “Robust and Resilient State Dependent Control of Continuous Time Nonlinear Systems With General Performance Criteria
,” 49th IEEE Conference on Decision and Control
(CDC
), Atlanta, GA, Dec. 15–17, pp. 603–608.28.
Wang
, X.
, Yaz
, E. E.
, and Yaz
, Y. I.
, 2011
, “Robust and Resilient State Dependent Control of Discrete-Time Nonlinear Systems With General Performance Criteria
,” 18th IFAC World Congress
, Milano, Italy, Aug. 28–Sept. 2, pp. 10904
–10909
.29.
Cloutier
, J. R.
, D'Souza
, C. N.
, and Mracek
, C. P.
, 1996
, “Nonlinear Regulation and Nonlinear Control Via the State-Dependent Riccati Equation Technique—Part 1: Theory, Part 2 Examples
,” First International Conference on Nonlinear Problems in Aviation and Aerospace,
Daytona Beach, FL, May 9–11, pp. 117
–141
.30.
Cloutier
, J. R.
, 1997
, “State-Dependent Riccati Equation Techniques: An Overview
,” American Control Conference
(ACC
), Albuquerque, MN, June 6, pp. 932
–936
.31.
Dutka
, A. S.
, Ordys
, A. W.
, and Grimble
, M. J.
, 2005
, “Optimized Discrete-Time State Dependent Riccati Equation Regulator
,” American Control Conference
(ACC
), Portland, OR, June 8–10, pp. 2293
–2298
.32.
Cimen
, T.
, 2008
, “State Dependent Riccati Equation (SDRE) Control: A Survey
,” 17th World Congress, the International Federation of Automatic Control
, Seoul, Korea, July 6–11, pp. 3761
–3775
.33.
Wang
, X.
, Yaz
, E. E.
, Schneider
, S. C.
, and Yaz
, Y. I.
, Oct. 2011
, “H2-H∞ Control of Discrete Time Nonlinear Systems Using SDRE Approach
,” ASME
Paper No. DSCC2011-5935.34.
Aliyu
, M. D. S.
, 2011
, Nonlinear H-Infinity Control, Hamiltonian Systems and Hamilton-Jacobi Equations
, CRC Press
, Boca Raton, FL.35.
Izutsu
, M.
, Pan
, Y.
, and Furuta
, K.
, Jan. 2008
, “Swing-Up of Furuta Pendulum by Nonlinear Sliding Mode Control
,” SICE J. Control, Meas., Syst. Integration
, 1
(1
), pp. 12
–17
.36.
Hernández-Guzmán
, V. M.
, Antonio-Cruz
, M.
, and Silva-Ortigoza
, R.
, 2016
, “Linear State Feedback Regulation of a Furuta Pendulum: Design Based on Differential Flatness and Root Locus
,” IEEE Access
, 4
, pp. 8721
–8736
.Copyright © 2018 by ASME
You do not currently have access to this content.