Hybrid electric vehicle (HEV) energy management strategies usually ignore the effects from dynamics of internal combustion engines (ICEs). They usually rely on steady-state maps to determine the required ICE torque and energy conversion efficiency. It is important to investigate how ignoring these dynamics influences energy consumption in HEVs. This shortcoming is addressed in this paper by studying effects of engine and clutch dynamics on a parallel HEV control strategy for torque split. To this end, a detailed HEV model including clutch and ICE dynamic models is utilized in this study. Transient and steady-state experiments are used to verify the fidelity of the dynamic ICE model. The HEV model is used as a testbed to implement the torque split control strategy. Based on the simulation results, the ICE and clutch dynamics in the HEV can degrade the control strategy performance during the vehicle transient periods of operation by around 8% in urban dynamometer driving schedule (UDDS) drive cycle. Conventional torque split control strategies in HEVs often overlook this fuel penalty. A new model predictive torque split control strategy is designed that incorporates effects of the studied powertrain dynamics. Results show that the new energy management control strategy can improve the HEV total energy consumption by more than 4% for UDDS drive cycle.

References

1.
Hutchinson
,
T.
,
Burgess
,
S.
, and
Herrmann
,
G.
,
2014
, “
Current Hybrid-Electric Powertrain Architectures: Applying Empirical Design Data to Life Cycle Assessment and Whole-Life Cost Analysis
,”
J. Appl. Energy
,
119
, pp.
314
329
.
2.
Johnson
,
V. H.
,
Wipke
,
K. B.
, and
Rausen
,
D. J.
,
2000
, “
HEV Control Strategy for Real-Time Optimization of Fuel Economy and Emissions
,”
SAE Trans.
,
109
(
3
), pp.
1677
1690
.
3.
Salmasi
,
F.
,
2007
, “
Control Strategies for Hybrid Electric Vehicles: Evolution, Classification, Comparison, and Future Trends
,”
IEEE Trans. Veh. Technol.
,
56
(
5
), pp.
2393
2404
.
4.
Çağatay Bayindir
,
K.
,
Gözüküçük
,
A. M.
, and
Teke
,
A.
,
2011
, “
A Comprehensive Overview of Hybrid Electric Vehicle: Powertrain Configurations, Powertrain Control Techniques and Electronic Control Units
,”
J. Energy Convers. Manage.
,
52
(
2
), pp.
1305
1313
.
5.
Wipke
,
K. B.
,
Cuddy
,
M. R.
, and
Burch
,
S. D.
,
1999
, “
ADVISOR 2.1: A User-Friendly Advanced Powertrain Simulation Using a Combined Backward/Forward Approach
,”
IEEE Trans. Veh. Technol.
,
48
(
6
), pp.
1751
1761
.
6.
Pisu
,
P.
, and
Rizzoni
,
G.
,
2007
, “
A Comparative Study of Supervisory Control Strategies for Hybrid Electric Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
15
(
3
), pp.
506
518
.
7.
Zeng
,
X.
,
Yang
,
N.
,
Peng
,
Y.
,
Zhang
,
Y.
, and
Wang
,
J.
,
2014
, “
Research on Energy Saving Control Strategy of Parallel Hybrid Loader
,”
J. Autom. Constr.
,
38
, pp.
100
108
.
8.
Lee
,
H.-D.
, and
Sul
,
S.-K.
,
1998
, “
Fuzzy-Logic-Based Torque Control Strategy for Parallel-Type Hybrid Electric Vehicle
,”
IEEE Trans. Ind. Electron.
,
45
(
4
), pp.
625
632
.
9.
Lee
,
H.-D.
,
Koo
,
E.-S.
,
Sul
,
S.-K.
,
Kim
,
J.-S.
,
Kamiya
,
M.
,
Ikeda
,
H.
,
Shinohara
,
S.
, and
Yoshida
,
H.
,
2000
, “
Torque Control Strategy for a Parallel-Hybrid Vehicle Using Fuzzy Logic
,”
IEEE Ind. Appl. Mag.
,
6
(
6
), pp.
33
38
.
10.
Won
,
J.-S.
, and
Langari
,
R.
,
2005
, “
Intelligent Energy Management Agent for a Parallel Hybrid Vehicle—Part II: Torque Distribution, Charge Sustenance Strategies, and Performance Results
,”
IEEE Trans. Veh. Technol.
,
54
(
3
), pp.
935
953
.
11.
Poursamad
,
A.
, and
Montazeri
,
M.
,
2008
, “
Design of Genetic-Fuzzy Control Strategy for Parallel Hybrid Electric Vehicles
,”
J. Control Eng. Pract.
,
16
(
7
), pp.
861
873
.
12.
Kum
,
D.
,
Peng
,
H.
, and
Bucknor
,
N. K.
,
2011
, “
Supervisory Control of Parallel Hybrid Electric Vehicles for Fuel and Emission Reduction
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
6
), p.
061010
.
13.
Koot
,
M.
,
Kessels
,
J. T. B. A.
,
de Jager
,
B.
,
Heemels
,
W. P. M. H.
,
Van den Bosch
,
P. P. J.
, and
Steinbuch
,
M.
,
2005
, “
Energy Management Strategies for Vehicular Electric Power Systems
,”
IEEE Trans. Veh. Technol.
,
54
(
3
), pp.
771
782
.
14.
Schouten
,
N.
,
Salman
,
M. A.
, and
Kheir
,
N. A.
,
2002
, “
Fuzzy Logic Control for Parallel Hybrid Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
10
(
3
), pp.
460
468
.
15.
Delprat
,
S.
,
Lauber
,
J.
,
Guerra
,
T. M.
, and
Rimaux
,
J.
,
2004
, “
Control of a Parallel Hybrid Powertrain: Optimal Control
,”
IEEE Trans. Veh. Technol.
,
53
(
3
), pp.
872
881
.
16.
Van Berkel
,
K.
,
Hofman
,
T.
,
Vroemen
,
B.
, and
Steinbuch
,
M.
,
2012
, “
Optimal Control of a Mechanical Hybrid Powertrain
,”
IEEE Trans. Veh. Technol.
,
61
(
2
), pp.
485
497
.
17.
Biasini
,
R.
,
Onori
,
S.
, and
Rizzoni
,
G.
,
2013
, “
A Near-Optimal Rule-Based Energy Management Strategy for Medium Duty Hybrid Truck
,”
Int. J. Powertrains
,
2
(
2/3
), pp.
232
261
.
18.
Kermani
,
S.
,
Delprat
,
S.
,
Guerra
,
T.-M.
,
Trigui
,
R.
, and
Jeanneret
,
B.
,
2012
, “
Predictive Energy Management for Hybrid Vehicle
,”
J. Control Eng. Pract.
,
20
(
4
), pp.
408
420
.
19.
Wei
,
X.
,
Pisu
,
P.
,
Rizzoni
,
G.
, and
Yurkovich
,
S.
,
2003
, “
Dynamic Modeling of a Hybrid Electric Drivetrain for Fuel Economy, Performance and Driveability Evaluations
,”
ASME
Paper No. IMECE2003-42548.
20.
Barbarisi
,
O.
,
Westervelt
,
E. R.
,
Vasca
,
F.
, and
Rizzoni
,
G.
,
2005
, “
Power Management Decoupling Control for a Hybrid Electric Vehicle
,”
44th IEEE Conference on Decision and Control and 2005 European Control Conference
(
CDC-ECC
), Seville, Spain, Dec. 15, pp.
2012
2017
.
21.
Yan
,
F.
,
Wang
,
J.
, and
Huang
,
K.
,
2012
, “
Hybrid Electric Vehicle Model Predictive Control Torque-Split Strategy Incorporating Engine Transient Characteristics
,”
IEEE Trans. Veh. Technol.
,
61
(
6
), pp.
2458
2467
.
22.
Powell
,
B.
,
Bailey
,
K. E.
, and
Cikanek
,
S. R.
,
1998
, “
Dynamic Modeling and Control of Hybrid Electric Vehicle Powertrain Systems
,”
IEEE Tran. Control Syst.
,
18
(
5
), pp.
17
33
.
23.
Lin
,
C.-C.
,
Peng
,
H.
,
Grizzle
,
J. W.
, and
Kang
,
J.-M.
,
2003
, “
Power Management Strategy for a Parallel Hybrid Electric Truck
,”
IEEE Trans. Control Sys. Technol.
,
11
(
6
), pp.
839
849
.
24.
Solouk
,
A.
, and
Shahbakhti
,
M.
,
2016
, “
Energy Optimization and Fuel Economy Investigation of Series Hybrid Electric Vehicle Integrated With Diesel/RCCI Engines
,”
Energies
,
9
(
12
), pp.
1
23
.https://pdfs.semanticscholar.org/8089/43f9429bd583e97e56d242012694b2c190fc.pdf
25.
Solouk
,
A.
,
Shakiba-herfeh
,
M.
,
Kaushik
,
K.
,
Solmaz
,
H.
,
Dice
,
P.
,
Bidarvatan
,
M.
,
Kondipati
,
N. N. T.
, and
Shahbakhti
,
M.
,
2016b
, “
Fuel Economy Benefits of Integrating a Multi-Mode Low Temperature Combustion (LTC) Engine in a Series Extended Range Electric Powertrain
,”
SAE
Paper No. 2016-01-2361.
26.
Bidarvatan
,
M.
, and
Shahbakhti
,
M.
,
2014
, “
Impact of Engine Dynamics on Torque Split Management of a Hybrid Electric Vehicle
,”
ASME
Paper No. DSCC2014-6283.
27.
Bidarvatan
,
M.
, and
Shahbakhti
,
M.
,
2015
, “
Energy Management Control of a Hybrid Electric Vehicle by Incorporating Powertrain Dynamics
,”
ASME
Paper No. DSCC2015-9702.
28.
Ehsani
,
M.
,
Gao
,
Y.
, and
Emadi
,
A.
,
2009
,
Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design
,
CRC Press
, Boca Raton, FL, Chap. 2.
29.
Jazayeri
,
S. A.
,
Rad
,
M. S.
, and
Azadi
,
S.
,
2005
,“
Development and Validation for Mean Value Engine Models
,”
ASME
Paper No. ICEF2005-1267.
30.
Hendricks
,
E.
, and
Sorenson
,
S.
,
1990
, “
Mean Value Modelling of Spark Ignition Engines
,”
SAE
Paper No. 900616.
31.
Hendricks
,
E.
,
Hendricks
,
E.
,
Chevalier
,
A.
,
Jensen
,
M.
,
Sorenson
,
S. C.
,
Trumpy
,
D.
, and
Asik
,
J.
,
1996
, “
Modeling of the Intake Manifold Filling Dynamics
,”
SAE
Paper No. 960037.
32.
Sahraeian
,
A.
,
Shahbakhti
,
M.
,
Aslani
,
A. R.
,
Jazayeri
,
S. A.
,
Azadi
,
S.
, and
Shamekhi
,
A. H.
,
2004
, “
Longitudinal Vehicle Dynamics Modeling on the Basis of Engine Modeling
,”
SAE
Paper No. 2004-01-1620.
33.
Sharifirad
,
M.
,
Jazayeri
,
S. A.
, and
Shahbakhti
,
M.
,
2006
, “
Automatic Driver Design and Longitudinal Dynamic Simulation for Passenger Cars
,”
SAE
Paper No. 2006-01-1015.
34.
Aquino
,
C.
,
1981
, “
Transient a/F Control Characteristics of the 5 Liter Central Fuel Injection Engine
,”
SAE
Paper No. 810494.
35.
Shahbakhti
,
M.
, and
Koch
,
C.
,
2009
, “
Dynamic Modeling of HCCI Combustion Timing in Transient Fueling Operation
,”
SAE Int. J. Engines
,
2
(
1
), pp.
1098
1113
.
36.
Amini
,
M.
,
Amini
,
M. R.
,
Shahbakhti
,
M.
,
Pan
,
S.
, and
Hedrick
,
J. K.
,
2017
, “
Discrete Adaptive Second Order Sliding Mode Controller Design With Application to Automotive Control Systems With Model Uncertainties
,”
American Control Conference
(
ACC
), Seattle, WA, May 24–26.
37.
Amini
,
M.
, and
Shahbakhti
,
M.
,
Pan
,
S.
, and
Hedrick
,
J. K.
,
2017
, “
Bridging the Gap Between Designed and Implemented Controllers Via Adaptive Robust Discrete Sliding Mode Control
,”
J. Control Eng. Pract.
,
59
, pp.
1
15
.
38.
Ehsani
,
M.
,
Rahman
,
K. M.
, and
Toliyat
,
H. A.
,
1997
, “
Propulsion System Design of Electric and Hybrid Vehicles
,”
IEEE Trans. Ind. Electron.
,
44
(
1
), pp.
19
27
.
39.
Linden
,
D.
, and
Reddy
,
T.
,
1995
,
Handbook of Batteries
,
McGraw-Hill
,
New York
, Chap. 3.
40.
Cordoba-Arenas
,
Onori
,
S.
, and
Rizzoni
,
G.
,
2014
, “
A Control-Oriented Lithium-Ion Battery Pack Model for Plug-in Hybrid Electric Vehicle Cycle-Life Studies and System Design With Consideration of Health Management
,”
J. Power Sources
,
279
, pp.
791
808
.
41.
Shahbakhti
,
M.
,
Ghafuri
,
M.
,
Aslani
,
A. R.
,
Sahraeian
,
A.
,
Jazayeri
,
S. A.
, and
Azadi
,
S.
,
2010
, “
A Method to Determine Fuel Transport Dynamics Model Parameters in Port Fuel Injected Gasoline Engines During Cold Start and Warm-Up Conditions
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
074504
.
42.
Sciarretta
,
A.
, and
Guzzella
,
L.
,
2007
, “
Control of Hybrid Electric Vehicles
,”
IEEE Control Syst. Mag.
,
27
(
2
), pp.
60
70
.
43.
Razmara
,
M.
,
Bidarvatan
,
M.
,
Shahbakhti
,
M.
, and
Robinett
,
R. D.
,
2016
, “
Optimal Exergy-Based Control of Internal Combustion Engines
,”
Appl. Energy
,
183
, pp.
1389
1403
.
44.
Fotouhi
,
A.
,
Yusof
,
R.
,
Rahmani
,
R.
,
Mehilef
,
S.
, and
Shateri
,
N.
,
2014
, “
A Review on the Applications of Driving Data and Traffic Information for Vehicles' Energy Conservation
,”
Renewable. Sustainable Energy Rev.
,
37
, pp.
822
833
.
45.
Reghunath
,
S.
,
Sharma
,
D.
, and
Athreya
,
A. S.
,
2014
, “
Optimal Gearshift Strategy Using Predictive Algorithm for Fuel Economy Improvement
,”
SAE
Paper No. 2014-01-1743.
46.
Lee
,
T.-K.
,
Bareket
,
Z.
,
Gordon
,
T.
, and
Filipi
,
Z. S.
,
2012
, “
Stochastic Modeling for Studies of Real-World PHEV Usage: Driving Schedule and Daily Temporal Distributions
,”
IEEE Trans. Veh. Technol.
,
61
(
4
), pp.
1493
1502
.
47.
Dey
,
K.
,
Rayamajhi
,
A.
,
Chowdhury
,
M.
,
Bhavsar
,
P.
, and
Martin
,
J.
,
2016
, “
V2V and V2I Communication in a Heterogeneous Wireless Network Performance Evaluation
,”
Trans. Res. Part C: Emerging Technol.
,
68
, pp.
168
184
.
48.
Wang
,
L.
,
2009
,
Model Predictive Control System Design and Implementation Using MATLAB
,
Springer Science & Business Media
, Berlin.
49.
Borhan
,
H.
,
Vahidi
,
A.
,
Phillips
,
A.
,
Kuang
,
M.
, and
Kolmanovsky
,
I.
,
2009
, “
Predictive Energy Management of a Power-Split HEV
,”
American Control Conference
, St. Louis, MO, June 10–12, pp.
3970
3976.
50.
Yazdani
,
A.
, and
Bidarvatan
,
M.
,
2018
, “
Real-Time Optimal Control of Power Management in a Fuel Cell Hybrid Electric Vehicle: A Comparative Analysis
,”
SAE Int. J. Alternative Powertrains
,
7
(
1
), pp. 1–10.
51.
Solouk
,
A.
, and
Shahbakhti
,
M.
,
2016
, “
Energy Optimization and Fuel Economy Investigation of a Series Hybrid Electric Vehicle Integrated With Diesel/RCCI Engines
,”
Energies
,
9
(
12
), p.
1020
.
52.
Solouk
,
A.
, and
Shahbakhti
,
M.
,
2017
, “
Modeling and Energy Management of an HCCI-Based Powertrain for Series Hybrid and Extended Range Electric Vehicles
,”
Int. J. Powertrains
,
6
(
2
), pp. 226–258.
53.
Geng
,
X.
,
Geng
,
X.
,
Liang
,
H.
,
Yu
,
B.
,
Zhao
,
P.
,
He
,
L.
, and
Huang
,
R.
,
2017
, “
A Scenario-Adaptive Driving Behavior Prediction Approach to Urban Autonomous Driving
,”
Appl. Sci.
,
7
(
4
), p.
426
.
You do not currently have access to this content.