Efficient control of a gas metal arc welding (GMAW) process enables one to obtain high quality products as a consequence of achieving a high quality weld. Although control of the droplet detachment frequency in the welding process would play a great role in improving the welding quality, measuring this variable is difficult and expensive. In this paper, we attempt to control the frequency of droplet detachments without directly measuring it. To this end, we utilize the hybrid property of the GMAW process to indirectly control the frequency. Specifically, a mixed logical dynamical (MLD) model is obtained by considering the hybrid act of the process during droplet detachment. Then, a nonlinear model predictive controller with variable control and prediction horizons is designed incorporating the hybrid behavior of the process. The controller regulates the droplet detachment frequency without measuring this variable directly. Computer simulation results show that the proposed controller leads to a higher quality weld compared to the present approaches.

References

1.
Moore
,
K. L.
,
Naidu
,
D. S.
, and
Ozcelik
,
S.
,
2003
,
Modeling, Sensing and Control of Gas Metal Arc Welding
,
Elsevier Science Ltd
,
Kidlington, UK
.
2.
Ghosh
,
P. K.
,
2017
, “
Introduction to Gas Metal Arc Welding Process
,”
Pulse Current Gas Metal Arc Welding
,
Springer
, Singapore, pp.
1
30
.
3.
Arif
,
N.
,
Lee
,
J. H.
, and
Yoo
,
C. D.
,
2008
, “
Modelling of Globular Transfer Considering Momentum Flux in GMAW
,”
J. Phys. D: Appl. Phys.
,
41
(
19
), p.
195503
.
4.
Moore
,
K. L.
,
Naidu
,
D. S.
,
Yender
,
R.
, and
Tyler
,
J.
,
1997
, “
Gas Metal Arc Welding Control—Part I: Modeling and Analysis
,”
Nonlinear Anal.: Theory, Methods Appl.
,
30
(
5
), pp.
3101
3111
.
5.
Song
,
J. B.
, and
Hardt
,
D. E.
,
1994
, “
Dynamic Modeling and Adaptive Control of the Gas Metal Arc Welding Process
,”
ASME J. Dyn. Syst. Meas. Control
,
116
(
3
), pp.
405
405
.
6.
Bera
,
M. K.
,
Bandyopadhyay
,
B.
, and
Paul
,
A. K.
,
2015
, “
Variable Gain Super-Twisting Control of GMAW Process for Pipeline Welding
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
7
), p.
074501
.
7.
Naidu
,
D. S.
, and
Moore
,
K. L.
,
1998
, “
Automatic Control Strategies for Gas Metal Arc Welding: A Status Survey
,”
Fifth International Conference: Trends in Welding Research
, Pine Mountain, GA, June 1–5, pp.
1027
1032
.
8.
Anzehaee
,
M. M.
, and
Haeri
,
M.
,
2011
, “
Estimation and Control of Droplet Size and Frequency in Projected Spray Mode of a Gas Metal Arc Welding (GMAW) Process
,”
ISA Trans.
,
50
(
3
), pp.
409
418
.
9.
Anzehaee
,
M. M.
,
Haeri
,
M.
, and
Tipi
,
A. R. D.
,
2010
, “
Gas Metal Arc Welding Process Control Based on Arc Length and Arc Voltage
,” IEEE
International Conference on Control Automation and Systems
(
ICCAS
), Gyeonggi-do, South Korea, Oct. 27–30, pp.
280
285
.
10.
Moore
,
K. L.
,
Abdelrahman
,
M. A.
, and
Naidu
,
D. S.
,
1999
, “
Gas Metal Arc Welding Control—II: Control Strategy
,”
Nonlinear Anal.: Theory, Methods Appl.
,
35
(
1
), pp.
85
93
.
11.
Moore
,
K. L.
,
Yender
,
R.
,
Tyler
,
J.
, and
Naidu
,
D. S.
,
1998
, “
Modeling, Calibration, and Control-Theoretic Analysis of the GMAW Process
,”
American Control Conference
, Philadelphia, PA, June 26, pp.
1747
1751
.
12.
AbdelRahman
,
M.
,
1998
, “
Feedback Linearization Control of Current and Arc Length in GMAW Systems
,”
American Control Conference
, Philadelphia, PA, June 26, pp.
1757
1761
.
13.
Jalili-Kharaajoo
,
M.
,
Gholampour
,
V.
,
Ebrahimirad
,
H.
, and
Ashari
,
A. E.
,
2003
, “
Robust Nonlinear Control of Current and Arc Length in GMAW Systems
,”
IEEE Conference on Control Applications
(
CCA
), Istanbul, Turkey, June 25, pp.
1313
1316
.
14.
Ozcelik
,
S.
,
Moore
,
K. L.
, and
Naidu
,
D. S.
,
1998
, “
Application of MIMO Direct Adaptive Control to Gas Metal Arc Welding
,”
American Control Conference
, Philadelphia, PA, June 26, pp.
1762
1766
.
15.
Zhang
,
J.
, and
Walcott
,
B. L.
,
2006
, “
Adaptive Interval Model Control of Arc Welding Process
,”
IEEE Trans. Control Syst. Technol.
,
14
(
6
), pp.
1127
1134
.
16.
Anzehaee
,
M. M.
, and
Haeri
,
M.
,
2012
, “
A New Method to Control Heat and Mass Transfer to Work Piece in a GMAW Process
,”
J. Process Control
,
22
(
6
), pp.
1087
1102
.
17.
Hu
,
P.
,
Huang
,
J.
, and
Zeng
,
M.
,
2017
, “
Application of Fuzzy Control Method in Gas Metal Arc Welding
,”
Int. J. Adv. Manuf. Technol.
,
92
(
5–8
), pp.
1769
7775
.
18.
Sartipizadeh
,
H.
,
Vincent
,
T. L.
, and
Kee
,
R. J.
,
2015
, “
Economic Control of Methane Reforming
,”
American Control Conference
(
ACC
), Chicago, IL, July 1–3, pp.
5641
5646
.
19.
Sartipizadeh
,
H.
, and
Vincent
,
T. L.
,
2016
, “
Uncertainty Characterization for Robust MPC Using an Approximate Convex Hull Method
,”
American Control Conference
(
ACC
), Boston, MA, July 6–8, pp.
2699
2704
.
20.
Zeman
,
P.
, and
Kemmetmller
,
W.
,
2017
, “
Nonlinear Model Predictive Control of Axial Piston Pumps
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
8
), p.
081008
.
21.
Sartipizadeh
,
H.
, and
Vincent
,
T. L.
,
2018
, “
A New Robust MPC Using an Approximate Convex Hull
,”
Automatica
,
92
, pp.
115
122
.
22.
Anzehaee
,
M. M.
, and
Haeri
,
M.
,
2011
, “
Welding Current and Arc Voltage Control in a GMAW Process Using Armarkov Based MPC
,”
Control Eng. Pract.
,
19
(
12
), pp.
1408
1422
.
23.
Sartipizadeh
,
H.
, and
Haeri
,
M.
,
2012
, “
Control of Gas Metal Arc Welding by an Extended DMC
,”
International Conference on Control Applications
(
CCA
), Dubrovnik, Croatia, Oct. 3–5, pp.
1430
1434
.
24.
Zhang
,
Y. M.
,
Liguo
,
E.
, and
Walcott
,
B. L.
,
2002
, “
Robust Control of Pulsed Gas Metal Arc Welding
,”
ASME J. Dyn. Syst. Meas. Control
,
124
(
2
), pp.
281
289
.
25.
Yan, Z., Zhang, G., Zhang, X., Gao, H., and Wu, L., 2004, “
Visual Sensing and Profile Extraction of the Weld Pool in Pulsed Gas metal Arc Welding
,”
Proc. Inst. Mech. Eng., Part B
,
218
(10), pp. 1333–1338.
26.
Thomsen
,
J. S.
,
2006
, “
Control of Pulsed Gas Metal Arc Welding
,”
Int. J. Modell., Identif. Control
,
1
(
2
), pp.
115
125
.
27.
Lu
,
L.
,
Fan
,
D.
,
Huang
,
J.
, and
Shi
,
Y.
,
2012
, “
Decoupling Control Scheme for Pulsed GMAW Process of Aluminum
,”
J. Mater. Process. Technol.
,
212
(
4
), pp.
801
807
.
28.
Ghosh
,
P. K.
,
2017
, “
Concept of Pulse Current Gas Metal Arc Welding Process
,”
Pulse Current Gas Metal Arc Welding
,
Springer
, Singapore, pp.
31
45
.
29.
Wang
,
Q.
,
Qi
,
B.
,
Cong
,
B.
, and
Yang
,
M.
,
2017
, “
Output Characteristic and Arc Length Control of Pulsed Gas Metal Arc Welding Process
,”
J. Manuf. Process.
,
29
(
Suppl. C
), pp.
427
437
.
30.
Sen
,
M.
,
Mukherjee
,
M.
,
Singh
,
S. K.
, and
Pal
,
T. K.
,
2018
, “
Effect of Double-Pulsed Gas Metal Arc Welding (Dp-GMAW) Process Variables on Microstructural Constituents and Hardness of Low Carbon Steel Weld Deposits
,”
J. Manuf. Process.
,
31
, pp.
424
439
.
31.
Pal
,
K.
, and
Pal
,
S. K.
,
2011
, “
Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding: A Review
,”
J. Mater. Eng. Perform.
,
20
(
6
), pp.
918
931
.
32.
Palani
,
P. K.
, and
Murugan
,
N.
,
2006
, “
Selection of Parameters of Pulsed Current Gas Metal Arc Welding
,”
J. Mater. Process. Technol.
,
172
(
1
), pp.
1
10
.
33.
Hirai
,
A.
,
Kaneko
,
Y.
,
Hosoda
,
T.
,
Yamane
,
S.
, and
Oshima
,
K.
,
2001
, “
Sensing and Control of Weld Pool by Fuzzy-Neural Network in Robotic Welding System
,”
27th Annual Conference of the IEEE, Industrial Electronics Society
(
IECON'01
), Denver, CO, Nov. 29–Dec. 2, pp.
238
242
.
34.
Tipi
,
A. R. D.
,
Sani
,
S. K. H.
, and
Pariz
,
N.
,
2015
, “
Frequency Control of the Drop Detachment in the Automatic GMAW Process
,”
J. Mater. Process. Technol.
,
216
(
0
), pp.
248
259
.
35.
Bemporad
,
A.
, and
Morari
,
M.
,
1999
, “
Control of Systems Integrating Logic, Dynamics, and Constraints
,”
Automatica
,
35
(
3
), pp.
407
427
.
36.
Habibi
,
J.
,
Moshiri
,
B.
, and
Sedigh
,
A. K.
,
2008
, “
Contractive Predictive Control of Mixed Logical Dynamical Hybrid Systems
,”
Int. J. Innovative Comput., Inf. Control
,
4
(
6
), pp.
1283
1298
.http://www.ijicic.org/07-093-1.pdf
37.
Thomas
,
J.
,
Dumur
,
D.
, and
Buisson
,
J.
,
2004
, “
Predictive Control of Hybrid Systems Under a Multi-MLD Formalism With State Space Polyhedral Partition
,”
American Control Conference
, Boston, MA, June 30–July 2, pp.
2516
2521
.https://ieeexplore.ieee.org/document/1383843/
38.
Xu
,
Y.
,
Fang
,
G.
,
Lv
,
N.
,
Chen
,
S.
, and
Zou
,
J. J.
,
2015
, “
Computer Vision Technology for Seam Tracking in Robotic GTAW and GMAW
,”
Rob. Comput. Integr. Manuf.
,
32
(
Suppl. C
), pp.
25
36
.
39.
Xu
,
Y.
,
Lv
,
N.
,
Fang
,
G.
,
Du
,
S.
,
Zhao
,
W.
,
Ye
,
Z.
, and
Chen
,
S.
,
2017
, “
Welding Seam Tracking in Robotic Gas Metal Arc Welding
,”
J. Mater. Process. Technol.
,
248
(
Suppl. C
), pp.
18
30
.
40.
Peterson
,
T.
,
Hernndez
,
E.
,
Arkun
,
Y.
, and
Schork
,
F. J.
,
1992
, “
A Nonlinear DMC Algorithm and Its Application to a Semibatch Polymerization Reactor
,”
Chem. Eng. Sci.
,
47
(
4
), pp.
737
753
.
41.
Haeri
,
M.
, and
Beik
,
H. Z.
,
2005
, “
Application of Extended DMC for Nonlinear MIMO Systems
,”
Comput. Chem. Eng.
,
29
(
9
), pp.
1867
1874
.
42.
Khalili
,
M.
,
Haeri
,
M.
, and
Tipi
,
A. R. D.
,
2010
, “
Designing of a Static Frequency Observer for GMAW Process in the Globular Transfer Mode
,”
International Conference on Control Automation and Systems
(
ICCAS
), Gyeonggi-do, South Korea, Oct. 27–30, pp.
286
289
.
You do not currently have access to this content.