In this paper, we study nonlinear robust stabilization of roll channel of a pursuit using the sum of squares (SOS) technique. Roll control is a fundamental part of flight control for every pursuit. A nonlinear state feedback controller is designed based on a new stability criterion which can be viewed as a dual to Lyapunov's second theorem. This criterion has a convexity property, which is used for controller design with convex optimization. Furthermore, using generalized S-procedure lemma robustness of the controller is guaranteed. The performance of the proposed method for roll autopilot is verified via numerical simulations.

References

References
1.
Blakelock
,
J. H.
,
1991
,
Automatic Control of Aircraft and Missiles
,
Wiley
,
New York
.
2.
Nesline
,
F. W.
,
Wells
,
B. H.
, and
Zarchan
,
P.
,
1979
, “
A Combined Optimal/Classical Approach to Robust Missile Autopilot Design
,”
J. Guid. Control Dyn.
,
4
(
3
), pp.
316
322
.https://arc.aiaa.org/doi/10.2514/6.1979-1731
3.
Parkhi
,
P. P.
,
Bandyopadhyay
,
B.
, and
Jha
,
M.
,
2013
, “
Roll Autopilot Design Using Second Order Sliding Mode
,”
Int. J. Autom. Control
,
7
(
3
), p.
202
.
4.
Trivedi
,
P. K.
,
Bandyopadhyay
,
B.
,
Mahata
,
S.
, and
Chaudhuri
,
S.
,
2015
, “
Roll Stabilization: A Higher-Order Sliding-Mode Approach
,”
IEEE Trans. Aerosp. Electron. Syst.
,
51
(
3
), pp.
2489
2496
.
5.
Mohammadi
,
M. R.
,
Jegarkandi
,
M. F.
, and
Moarrefianpour
,
A.
,
2016
, “
Robust Roll Autopilot Design to Reduce Couplings of a Tactical Missile
,”
Aerosp. Sci. Technol.
,
51
, pp.
142
150
.
6.
Sankar
,
R. B.
,
Bandyopadhyay
,
B.
, and
Arya
,
H.
,
2016
, “
Roll Autopilot Design of a Tactical Missile Using Higher Order Sliding Mode Technique
,”
Indian Control Conference
(
ICC
), Hyderabad, India, Jan. 4–6, pp.
298
303
.
7.
Parkhi
,
P.
,
Bandyopadhyay
,
B.
, and
Jha
,
M.
,
2010
, “
Design of Roll Autopilot for a Tail Controlled Missile Using Sliding Mode Technique
,”
11th International Workshop on Variable Structure Systems
(
VSS
), Mexico City, Mexico, June 26–28, pp.
389
394
.
8.
Tan
,
W.
,
2006
, “
Nonlinear Control Analysis and Synthesis Using Sum-of-Squares Programming
,”
Ph.D. thesis
, University of California, Berkeley, Oakland, CA.https://jagger.me.berkeley.edu/~pack/library/TanPhDThesis.pdf
9.
Parrilo
,
P.
,
2000
, “
Structured Semidefinite Programs and Semi-algebraic Geometry Methods in Robustness and Optimization
,”
Ph.D. dissertation
, California Institute of Technology, Pasadena, CA.http://www.mit.edu/~parrilo/pubs/files/thesis.pdf
10.
Papachristodoulou
,
A.
, and
Prajna
,
S.
,
2005
, “
Analysis of Non-Polynomial Systems Using the Sum of Squares Decomposition
,”
Positive Polynomials in Control
(Lecture Notes in Control and Information Sciences), Springer, Berlin, pp.
23
43
.
11.
Papachristodoulou
,
A.
,
Anderson
,
J.
,
Valmorbida
,
G.
,
Prajna
,
S.
,
Seiler
,
P.
, and
Parrilo
,
P. A.
,
2016
, “
SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB, Users Guide
,” accessed May 23, 2018, http://www.cds.caltech.edu/sostools
12.
Papachristodoulou
,
A.
, and
Prajna
,
S.
,
2002
, “
On the Construction of Lyapunov Functions Using the Sum of Squares Decomposition
,”
41st IEEE Conference on Decision and Control
, Las Vegas, NV, Dec. 10–13, pp.
3482
3487
.
13.
Papachristodoulou
,
A.
,
2004
, “
Analysis of Nonlinear Time-Delay Systems Using the Sum of Squares Decomposition
,”
American Control Conference
(
ACC
), Boston, MA, June 30–July 2, pp.
4153
4158
.https://ieeexplore.ieee.org/document/1383959/
14.
Prajna
,
S.
, and
Jadbabaie
,
A.
,
2004
, “
Safety Verification of Hybrid Systems Using Barrier Certificates
,”
Hybrid Systems: Computation and Control
(Lecture Notes in Computer Science),
Springer
,
Berlin
, pp.
477
492
.
15.
Tan
,
W.
, and
Packard
,
A.
,
2008
, “
Stability Region Analysis Using Polynomial and Composite Polynomial Lyapunov Functions and Sum-of-Squares Programming
,”
IEEE Trans. Autom. Control
,
53
(
2
), pp.
565
571
.
16.
Khodadadi
,
L.
,
Samadi
,
B.
, and
Khaloozadeh
,
H.
,
2014
, “
Estimation of Region of Attraction for Polynomial Nonlinear Systems: A Numerical Method
,”
ISA Trans.
,
53
(
1
), pp.
25
32
.
17.
Zakeri
,
H.
, and
Antsaklis
,
P. J.
,
2016
, “
Local Passivity Analysis of Nonlinear Systems: A Sum-of-Squares Optimization Approach
,”
American Control Conference
(
ACC
), Boston, MA, July 6–8, pp.
246
251
.
18.
Aylward
,
E. M.
,
Parrilo
,
P. A.
, and
Slotine
,
J.-J. E.
,
2008
, “
Stability and Robustness Analysis of Nonlinear Systems Via Contraction Metrics and SOS Programming
,”
Automatica
,
44
(
8
), pp.
2163
2170
.
19.
Prajna
,
S.
,
Papachristodoulou
,
A.
, and
Wu
,
F.
,
2004
, “
Nonlinear Control Synthesis by Sum-of-Squares Optimization: A Lyapunov-Based Approach
,”
Fifth Asian Control Conference
, Melbourne, Australia, July 20–23, pp.
157
165
.https://ieeexplore.ieee.org/document/1425952/
20.
Zhao
,
D.
, and
Wang
,
J.
,
2009
, “
An Improved Nonlinear H∞ Synthesis for Parameter-Dependent Polynomial Nonlinear Systems Using SOS Programming
,”
American Control Conference
(
ACC
), St. Louis, MO, June 10–12, pp.
796
801
.
21.
Zhao
,
D.
, and
Wang
,
J.-L.
,
2010
, “
Robust Static Output Feedback Design for Polynomial Nonlinear Systems
,”
Int. J. Robust Nonlinear Control
,
20
(
14
), pp.
1637
1654
.
22.
Manchester
,
I. R.
, and
Slotine
,
J.-J. E.
,
2014
, “
Output-Feedback Control of Nonlinear Systems Using Control Contraction Metrics and Convex Optimization
,”
Fourth Australian Control Conference
(
AUCC
), Canberra, Australia, Nov. 17–18, pp.
215
220
.
23.
Manchester
,
I. R.
, and
Slotine
,
J.-J. E.
,
2017
, “
Control Contraction Metrics: Convex and Intrinsic Criteria for Nonlinear Feedback Design
,”
IEEE Trans. Autom. Control
,
62
(
6
), pp.
3046
3053
.
24.
Madeira
,
D. D. S.
, and
Adamy
,
J.
,
2016
, “
Asymptotic Stabilization of Nonlinear Systems Using Passivity Indices
,”
American Control Conference
(
ACC
), Boston, MA, July 6–8, pp.
1154
1159
.
25.
Han
,
D.
, and
Althoff
,
M.
,
2015
, “
Control Synthesis for Non-Polynomial Systems: A Domain of Attraction Perspective
,”
54th IEEE Conference on Decision and Control
(
CDC
), Osaka, Japan, Dec. 15–18, pp.
1160
1167
.
26.
Maier
,
C.
,
Bohm
,
C.
,
Deroo
,
F.
, and
Allgower
,
F.
,
2010
, “
Predictive Control for Polynomial Systems Subject to Constraints Using Sum of Squares
,”
49th IEEE Conference on Decision and Control
(
CDC
), Atlanta, GA, July 6–8, Dec. 15–17, pp.
3433
3438
.
27.
Prajna
,
S.
,
Parrilo
,
P.
, and
Rantzer
,
A.
,
2004
, “
Nonlinear Control Synthesis by Convex Optimization
,”
IEEE Trans. Autom. Control
,
49
(
2
), pp.
310
314
.
28.
Rantzer
,
A.
,
2001
, “
A Dual to Lyapunov's Stability Theorem
,”
Syst. Control Lett.
,
42
(
3
), pp.
161
168
.
29.
Ataei
,
A.
, and
Wang
,
Q.
,
2012
, “
Non-Linear Control of an Uncertain Hypersonic Aircraft Model Using Robust Sum-of-Squares Method
,”
IET Control Theory Appl.
,
6
(
2
), p.
203
.
30.
Kwon
,
H. H.
,
Seo
,
M. W.
,
Jang
,
D. S.
, and
Choi
,
H. L.
,
2014
, “
Sum-of-Squares Based Stability Analysis for Skid-to-Turn Missiles With Three-Loop Autopilot
,”
29th Congress of the International Council of the Aeronautical Sciences
, St. Petersburg, Russia, Sept. 7–12, pp. 1–8.http://www.icas.org/ICAS_ARCHIVE/ICAS2014/data/papers/2014_0787_paper.pdf
31.
Zakeri
,
H.
, and
Ozgoli
,
S.
,
2012
, “
A Polynomial Modeling and State Feedback Control of Blood Glucose Regulatory in Diabetic Patients
,”
Fourth International Conference on Intelligent and Advanced Systems
(
ICIAS
), Kuala Lumpur, Malaysia, June 12–14, pp.
388
392
.
32.
Yu
,
J.
,
Yan
,
Z.
,
Wang
,
J.
, and
Li
,
Q.
,
2013
, “
Robust Stabilization of Ship Course Via Convex Optimization
,”
Asian J. Control
,
16
(
3
), pp.
871
877
.
33.
Zakeri
,
H.
, and
Ozgoli
,
S.
,
2014
, “
A Sum of Squares Approach to Robust PI Controller Synthesis for a Class of Polynomial Multi-Input Multi-Output Nonlinear Systems
,”
Nonlinear Dyn.
,
76
(
2
), pp.
1485
1495
.
34.
Sturm
,
F. J.
,
1999
, “
Using SeDuMi 1.02, a MATLAB Toolbox for Optimization Over Symmetric Cones
,”
Optim. Methods Software
,
11
(
1–4
), pp.
625
653
.
35.
Pozo
,
F.
, and
Rodellar
,
J.
,
2010
, “
Robust Stabilisation of Polynomial Systems With Uncertain Parameters
,”
Int. J. Syst. Sci.
,
41
(
5
), pp.
575
584
.
You do not currently have access to this content.