In this paper, we study nonlinear robust stabilization of roll channel of a pursuit using the sum of squares (SOS) technique. Roll control is a fundamental part of flight control for every pursuit. A nonlinear state feedback controller is designed based on a new stability criterion which can be viewed as a dual to Lyapunov's second theorem. This criterion has a convexity property, which is used for controller design with convex optimization. Furthermore, using generalized S-procedure lemma robustness of the controller is guaranteed. The performance of the proposed method for roll autopilot is verified via numerical simulations.
Issue Section:
Research Papers
References
1.
Blakelock
, J. H.
, 1991
, Automatic Control of Aircraft and Missiles
, Wiley
, New York
.2.
Nesline
, F. W.
, Wells
, B. H.
, and Zarchan
, P.
, 1979
, “A Combined Optimal/Classical Approach to Robust Missile Autopilot Design
,” J. Guid. Control Dyn.
, 4
(3
), pp. 316
–322
.https://arc.aiaa.org/doi/10.2514/6.1979-17313.
Parkhi
, P. P.
, Bandyopadhyay
, B.
, and Jha
, M.
, 2013
, “Roll Autopilot Design Using Second Order Sliding Mode
,” Int. J. Autom. Control
, 7
(3
), p. 202
.4.
Trivedi
, P. K.
, Bandyopadhyay
, B.
, Mahata
, S.
, and Chaudhuri
, S.
, 2015
, “Roll Stabilization: A Higher-Order Sliding-Mode Approach
,” IEEE Trans. Aerosp. Electron. Syst.
, 51
(3
), pp. 2489
–2496
.5.
Mohammadi
, M. R.
, Jegarkandi
, M. F.
, and Moarrefianpour
, A.
, 2016
, “Robust Roll Autopilot Design to Reduce Couplings of a Tactical Missile
,” Aerosp. Sci. Technol.
, 51
, pp. 142
–150
.6.
Sankar
, R. B.
, Bandyopadhyay
, B.
, and Arya
, H.
, 2016
, “Roll Autopilot Design of a Tactical Missile Using Higher Order Sliding Mode Technique
,” Indian Control Conference
(ICC
), Hyderabad, India, Jan. 4–6, pp. 298
–303
.7.
Parkhi
, P.
, Bandyopadhyay
, B.
, and Jha
, M.
, 2010
, “Design of Roll Autopilot for a Tail Controlled Missile Using Sliding Mode Technique
,” 11th International Workshop on Variable Structure Systems
(VSS
), Mexico City, Mexico, June 26–28, pp. 389
–394
.8.
Tan
, W.
, 2006
, “Nonlinear Control Analysis and Synthesis Using Sum-of-Squares Programming
,” Ph.D. thesis
, University of California, Berkeley, Oakland, CA.https://jagger.me.berkeley.edu/~pack/library/TanPhDThesis.pdf9.
Parrilo
, P.
, 2000
, “Structured Semidefinite Programs and Semi-algebraic Geometry Methods in Robustness and Optimization
,” Ph.D. dissertation
, California Institute of Technology, Pasadena, CA.http://www.mit.edu/~parrilo/pubs/files/thesis.pdf10.
Papachristodoulou
, A.
, and Prajna
, S.
, 2005
, “Analysis of Non-Polynomial Systems Using the Sum of Squares Decomposition
,” Positive Polynomials in Control
(Lecture Notes in Control and Information Sciences), Springer, Berlin, pp. 23
–43
.11.
Papachristodoulou
, A.
, Anderson
, J.
, Valmorbida
, G.
, Prajna
, S.
, Seiler
, P.
, and Parrilo
, P. A.
, 2016
, “SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB, Users Guide
,” accessed May 23, 2018, http://www.cds.caltech.edu/sostools12.
Papachristodoulou
, A.
, and Prajna
, S.
, 2002
, “On the Construction of Lyapunov Functions Using the Sum of Squares Decomposition
,” 41st IEEE Conference on Decision and Control
, Las Vegas, NV, Dec. 10–13, pp. 3482
–3487
.13.
Papachristodoulou
, A.
, 2004
, “Analysis of Nonlinear Time-Delay Systems Using the Sum of Squares Decomposition
,” American Control Conference
(ACC
), Boston, MA, June 30–July 2, pp. 4153
–4158
.https://ieeexplore.ieee.org/document/1383959/14.
Prajna
, S.
, and Jadbabaie
, A.
, 2004
, “Safety Verification of Hybrid Systems Using Barrier Certificates
,” Hybrid Systems: Computation and Control
(Lecture Notes in Computer Science), Springer
, Berlin
, pp. 477
–492
.15.
Tan
, W.
, and Packard
, A.
, 2008
, “Stability Region Analysis Using Polynomial and Composite Polynomial Lyapunov Functions and Sum-of-Squares Programming
,” IEEE Trans. Autom. Control
, 53
(2
), pp. 565
–571
.16.
Khodadadi
, L.
, Samadi
, B.
, and Khaloozadeh
, H.
, 2014
, “Estimation of Region of Attraction for Polynomial Nonlinear Systems: A Numerical Method
,” ISA Trans.
, 53
(1
), pp. 25
–32
.17.
Zakeri
, H.
, and Antsaklis
, P. J.
, 2016
, “Local Passivity Analysis of Nonlinear Systems: A Sum-of-Squares Optimization Approach
,” American Control Conference
(ACC
), Boston, MA, July 6–8, pp. 246
–251
.18.
Aylward
, E. M.
, Parrilo
, P. A.
, and Slotine
, J.-J. E.
, 2008
, “Stability and Robustness Analysis of Nonlinear Systems Via Contraction Metrics and SOS Programming
,” Automatica
, 44
(8
), pp. 2163
–2170
.19.
Prajna
, S.
, Papachristodoulou
, A.
, and Wu
, F.
, 2004
, “Nonlinear Control Synthesis by Sum-of-Squares Optimization: A Lyapunov-Based Approach
,” Fifth Asian Control Conference
, Melbourne, Australia, July 20–23, pp. 157
–165
.https://ieeexplore.ieee.org/document/1425952/20.
Zhao
, D.
, and Wang
, J.
, 2009
, “An Improved Nonlinear H∞ Synthesis for Parameter-Dependent Polynomial Nonlinear Systems Using SOS Programming
,” American Control Conference
(ACC
), St. Louis, MO, June 10–12, pp. 796
–801
.21.
Zhao
, D.
, and Wang
, J.-L.
, 2010
, “Robust Static Output Feedback Design for Polynomial Nonlinear Systems
,” Int. J. Robust Nonlinear Control
, 20
(14
), pp. 1637
–1654
.22.
Manchester
, I. R.
, and Slotine
, J.-J. E.
, 2014
, “Output-Feedback Control of Nonlinear Systems Using Control Contraction Metrics and Convex Optimization
,” Fourth Australian Control Conference
(AUCC
), Canberra, Australia, Nov. 17–18, pp. 215
–220
.23.
Manchester
, I. R.
, and Slotine
, J.-J. E.
, 2017
, “Control Contraction Metrics: Convex and Intrinsic Criteria for Nonlinear Feedback Design
,” IEEE Trans. Autom. Control
, 62
(6
), pp. 3046
–3053
.24.
Madeira
, D. D. S.
, and Adamy
, J.
, 2016
, “Asymptotic Stabilization of Nonlinear Systems Using Passivity Indices
,” American Control Conference
(ACC
), Boston, MA, July 6–8, pp. 1154
–1159
.25.
Han
, D.
, and Althoff
, M.
, 2015
, “Control Synthesis for Non-Polynomial Systems: A Domain of Attraction Perspective
,” 54th IEEE Conference on Decision and Control
(CDC
), Osaka, Japan, Dec. 15–18, pp. 1160
–1167
.26.
Maier
, C.
, Bohm
, C.
, Deroo
, F.
, and Allgower
, F.
, 2010
, “Predictive Control for Polynomial Systems Subject to Constraints Using Sum of Squares
,” 49th IEEE Conference on Decision and Control
(CDC
), Atlanta, GA, July 6–8, Dec. 15–17, pp. 3433
–3438
.27.
Prajna
, S.
, Parrilo
, P.
, and Rantzer
, A.
, 2004
, “Nonlinear Control Synthesis by Convex Optimization
,” IEEE Trans. Autom. Control
, 49
(2
), pp. 310
–314
.28.
Rantzer
, A.
, 2001
, “A Dual to Lyapunov's Stability Theorem
,” Syst. Control Lett.
, 42
(3
), pp. 161
–168
.29.
Ataei
, A.
, and Wang
, Q.
, 2012
, “Non-Linear Control of an Uncertain Hypersonic Aircraft Model Using Robust Sum-of-Squares Method
,” IET Control Theory Appl.
, 6
(2
), p. 203
.30.
Kwon
, H. H.
, Seo
, M. W.
, Jang
, D. S.
, and Choi
, H. L.
, 2014
, “Sum-of-Squares Based Stability Analysis for Skid-to-Turn Missiles With Three-Loop Autopilot
,” 29th Congress of the International Council of the Aeronautical Sciences
, St. Petersburg, Russia, Sept. 7–12, pp. 1–8.http://www.icas.org/ICAS_ARCHIVE/ICAS2014/data/papers/2014_0787_paper.pdf31.
Zakeri
, H.
, and Ozgoli
, S.
, 2012
, “A Polynomial Modeling and State Feedback Control of Blood Glucose Regulatory in Diabetic Patients
,” Fourth International Conference on Intelligent and Advanced Systems
(ICIAS
), Kuala Lumpur, Malaysia, June 12–14, pp. 388
–392
.32.
Yu
, J.
, Yan
, Z.
, Wang
, J.
, and Li
, Q.
, 2013
, “Robust Stabilization of Ship Course Via Convex Optimization
,” Asian J. Control
, 16
(3
), pp. 871
–877
.33.
Zakeri
, H.
, and Ozgoli
, S.
, 2014
, “A Sum of Squares Approach to Robust PI Controller Synthesis for a Class of Polynomial Multi-Input Multi-Output Nonlinear Systems
,” Nonlinear Dyn.
, 76
(2
), pp. 1485
–1495
.34.
Sturm
, F. J.
, 1999
, “Using SeDuMi 1.02, a MATLAB Toolbox for Optimization Over Symmetric Cones
,” Optim. Methods Software
, 11
(1–4
), pp. 625
–653
.35.
Pozo
, F.
, and Rodellar
, J.
, 2010
, “Robust Stabilisation of Polynomial Systems With Uncertain Parameters
,” Int. J. Syst. Sci.
, 41
(5
), pp. 575
–584
.Copyright © 2018 by ASME
You do not currently have access to this content.