Hybrid tracked vehicles are common in construction, agriculture, and military applications. Most use a series hybrid powertrain with large motors and operate at a relatively low efficiency. Although some researchers have proposed power-split powertrains, most of these would require an additional mechanism to achieve skid steering. To solve this problem and enhance drivability, a single-mode power-split hybrid powertrain for tracked vehicles with two outputs connected to the left and right tracks is proposed. The powertrain with three planetary gears (PGs) would then be able to control the torque on the two tracks independently and achieve skid steering. This powertrain has three degrees-of-freedom (DOF), allowing for control of the output torques and the engine speed independently from the vehicle running speed. All design candidates with three PGs are exhaustively searched by analyzing the dynamic characteristics and control to obtain the optimal design. Efficient topology design selection with parameter sizing and component sizing is accomplished using the enhanced progressive iteration approach to achieve better fuel economy using downsized components.

References

References
1.
Yaegashi, T.
,
Sasaki, S.
, and
Abe, T.
, 1998, “
Toyota Hybrid System: It's Concept and Technologies
,” World Automobile Congress (FISITA98), Paris, France, Paper No. F98TP095.
2.
Duoba
,
M.
,
Ng
,
H.
, and
Larsen
,
R.
,
2001
, “
Characterization and Comparison of Two Hybrid Electric Vehicles (HEVs)-Honda Insight and Toyota Prius
,”
SAE
Paper No. 2001-01-1335.
3.
Grewe
,
T. M.
,
Conlon
,
B. M.
, and
Holmes
,
A. G.
,
2007
, “
Defining the General Motors 2-Mode Hybrid Transmission
,”
SAE Paper No. 2007-01-0273
.
4.
Cobb, J.
,
2016
, “
December 2016 Dashboard
,” HybridCars, Toronto, ON, Canada, accessed Jan 5, 2017, http://www.hybridcars.com/december-2016-dashboard/
5.
Mantriota
,
G.
,
2001
, “
Theoretical and Experimental Study of a Power Split Continuously Variable Transmission System—Part 1
,”
Proc. Inst. Mech. Eng., Part D
,
215
(
7
), pp.
837
850
.
6.
Benford
,
H.
, and
Leising
,
M.
,
1981
, “
The Lever Analogy: A New Tool in Transmission Analysis
,”
SAE
Paper No. 810102.
7.
Liu
,
J.
,
2007
, “Modeling, Configuration and Control Optimization of Power-Split Hybrid Vehicles,”
Ph.D. thesis
, The University of Michigan, Ann Arbor, MI.
8.
Conlon
,
B.
,
2005
, “
Comparative Analysis of Single and Combined Hybrid Electrically Variable Transmission Operating Modes
,”
SAE
Paper No. 2005-01-1162.
9.
Yang
,
H.
,
Kim
,
B.
,
Park
,
Y.
,
Lim
,
W.
, and
Cha
,
S.
,
2009
, “
Analysis of Planetary Gear Hybrid Powertrain System—Part 2: Output Split System
,”
Int. J. Autom. Technol.
,
10
(
3
), pp.
381
390
.
10.
Holmes
,
A. G.
,
Schmidt
,
M. R.
, and
Klemen
,
D.
,
2003
, “
Three-Mode, Compound-Split, Electrically-Variable Transmission
,” Motors Liquidation Company, Detroit, MI, U.S. Patent No.
6,551,208
.
11.
Zhang
,
X.
,
Li
,
S. E.
,
Peng
,
H.
, and
Sun
,
J.
,
2015
, “
Efficient Exhaustive Search of Power-Split Hybrid Powertrains With Multiple Planetary Gears and Clutches
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
12
), p.
121006
.
12.
Bayrak
,
A. E.
,
Ren
,
Y.
, and
Papalambros
,
P. Y.
,
2013
, “
Design of Hybrid-Electric Vehicle Architectures Using Auto-Generation of Feasible Driving Modes
,”
ASME
Paper No. DETC2013-13043.
13.
Silvas
,
E.
,
Hofman
,
T.
,
Serebrenik
,
A.
, and
Steinbuch
,
M.
,
2015
, “
Functional and Cost-Based Automatic Generator for Hybrid Vehicles Topologies
,”
IEEE/ASME Trans. Mechatronics
,
20
(
4
), pp.
1561
1572
.
14.
Li
,
C. T.
, and
Peng
,
H.
,
2010
, “
Optimal Configuration Design for Hydraulic Split Hybrid Vehicles
,”
American Control Conference
(
ACC
), Baltimore, MD, June 30–July 2, pp.
5812
5817
.
15.
Pan
,
Z.
,
Zhang
,
X.
,
Silvas
,
E.
,
Peng
,
H.
, and
Ravi
,
N.
,
2015
, “
Optimal Design of All-Wheel-Drive Hybrid Pick-Up Trucks
,”
ASME
Paper No. DSCC2015-9701.
16.
Galvagno
,
E.
,
Rondinelli
,
E.
, and
Velardocchia
,
M.
,
2012
, “
Electro-Mechanical Transmission Modelling for Series-Hybrid Tracked Tanks
,”
Int. J. Heavy Veh. Syst.
,
19
(
3
), pp.
256
280
.
17.
Zou
,
Y.
,
Sun
,
F.
,
Hu
,
X.
,
Guzzella
,
L.
, and
Peng
,
H.
,
2012
, “
Combined Optimal Sizing and Control for a Hybrid Tracked Vehicle
,”
Energies
,
5
(
11
), pp.
4697
4710
.
18.
Shabana
,
A. A.
,
1997
,
Nonlinear Dynamics of Tracked Vehicles
,
Chicago University
,
Hyde Park, IL
.
19.
Chen
,
Z. Y.
, and
Zhao
,
G. Y.
,
2012
, “
Fuzzy Control Strategy and Simulation for Dual Electric Tracked Vehicle Motion Control
,”
Appl. Mech. Mater.
,
130–134
, pp.
309
312
.
20.
Schmidt
,
M. R.
,
2002
, “
Two-Mode, Compound-Split, Electro-Mechanical, Vehicular Transmission Particulary Adapted for Track-Laying Vehicles
,” Motors Liquidation Company, Detroit, MI, U.S. Patent No.
6,491,599
.
21.
Silvas
,
E.
,
Hofman
,
T.
,
Murgovski
,
N.
,
Etman
,
L. P.
, and
Steinbuch
,
M.
,
2017
, “
Review of Optimization Strategies for System-Level Design in Hybrid Electric Vehicles
,”
IEEE Trans. Veh. Technol.
,
66
(
1
), pp.
57
70
.
22.
Galdi
,
V.
,
Ippolito
,
L.
,
Piccolo
,
A.
, and
Vaccaro
,
A.
,
2001
, “
A Genetic-Based Methodology for Hybrid Electric Vehicles Sizing
,”
Soft Comput.
,
5
(
6
), pp.
451
457
.
23.
Zhang
,
B.
,
Chen
,
Z.
,
Mi
,
C.
, and
Murphey
,
Y. L.
,
2009
, “
Multi-Objective Parameter Optimization of a Series Hybrid Electric Vehicle Using Evolutionary Algorithms
,”
Vehicle Power and Propulsion Conference
(
VPPC'09
), Dearborn, MI, Sept. 7–10, pp.
921
925
.
24.
Long
,
V. T.
, and
Nhan
,
N. V.
,
2012
, “
Bees-Algorithm-Based Optimization of Component Size and Control Strategy Parameters for Parallel Hybrid Electric Vehicles
,”
Int. J. Autom. Technol.
,
13
(
7
), pp.
1177
1183
.
25.
Wu
,
J.
,
Zhang
,
C. H.
, and
Cui
,
N. X.
,
2008
, “
PSO Algorithm-Based Parameter Optimization for HEV Powertrain and Its Control Strategy
,”
Int. J. Autom. Technol.
,
9
(
1
), pp.
53
59
.
26.
Zhuang
,
W.
,
Zhang
,
X.
,
Peng
,
H.
, and
Wang
,
L.
,
2016
, “
Rapid Configuration Design of Multiple-Planetary-Gear Power-Split Hybrid Powertrain Via Mode Combination
,”
IEEE/ASME Trans. Mech.
,
21
(6), pp. 2924–2934.
27.
Zou
,
Y.
,
Chen
,
X.
, and
Li
,
D.
,
2014
, “
Parameter Matching Design and Control Optimization for Series Hybrid Tracked Bulldozer
,”
ASME J. Mech. Eng.
,
50
(
1
), pp.
70
75
.
28.
Zhuang
,
W.
,
Zhang
,
X.
,
Ding
,
Y.
, and
Wang
,
L.
,
2016
, “
Comparison of Multi-Mode Hybrid Powertrains With Multiple Planetary Gears
,”
Appl. Energy
,
178
, pp.
624
632
.
29.
Golbuff
,
S.
,
2006
, “Optimization of a Plug-In Hybrid Electric Vehicle,”
M.S. thesis
, Georgia Institute of Technology, Atlanta, Georgia.
30.
Shanmuganathan
,
U.
,
Govarthanan
,
R.
,
Muthumailvaganan
,
A.
, and
Imayakumar
,
A.
,
2006
, “
Modeling and Dynamic Simulation of IC Engine Driven Permanent Magnet Generator Using Matlab/Simulink for Hybrid Tracked Vehicle
,”
Conference on Electric and Hybrid Vehicles
(
ICEHV
), Pune, India, Dec. 18–20, pp. 1–6.
31.
Zhang
,
B.
,
Zhang
,
X.
, and
Xi
,
L.
,
2015
, “
Modelling and Economy Performance Simulation of Hybrid Electric Bulldozer Under Whole Operation Cycles
,”
Trans. Chin. Soc. Agric. Mach.
,
46
(
6
), pp.
294
302
.
32.
Graham
,
R.
,
2001
, “
Comparing the Benefits and Impacts of Hybrid Electric Vehicle Options
,” Electric Power Research Institute (EPRI), Palo Alto, CA, Report No.
1006892
.
33.
Kelley
,
C. T.
,
1999
,
Iterative Methods for Optimization
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
You do not currently have access to this content.