In this paper, a new robust terminal synergetic control scheme is proposed to regulate blood glucose level in diabetic patients (type I diabetes), based on recently developed synergetic control and a terminal attractor technique. The technique presented has the advantage of using a continuous control law. Moreover, the proposed control scheme, besides being chattering free, has the characteristics of finite time convergence. Lyapunov synthesis is adopted to ensure controlled system stability. Simulation results of terminal synergetic control are compared to classic synergetic and second-order sliding mode control (SMC) performance, demonstrating that the proposed control method allows for rapidly achieving normoglycemia in type I diabetes patients.

References

References
1.
Lam
,
Z. H.
,
Hwang
,
J. Y.
,
Lee
,
J. G.
,
Chase
,
J. G.
, and
Wake
,
G. C.
,
2002
, “
Active Insulin Infusion Using Optimal and Derivative-Weighted
,”
Control Med. Eng. Phys.
,
24
(
10
), pp.
663
672
.
2.
Sharmistha
,
M.
, and
Ashoke
,
S.
,
2010
, “
Blood Glucose Regulation in IDDM Patient by H∞ Control: An LMI Approach
,”
IEEE International Conference on Systems in Medicine and Biology
(
ICSMB
), Kharagpur, India, Dec. 16–18, pp.
16
18
.
3.
Hamed
,
A. N.
, and
Mohammad
,
S.
,
2015
, “
Model Predictive Control of Blood Sugar in Patients With Type-1 Diabetes
,”
Optim. Control Appl. Methods
,
37
(
4
), pp.
559
573
.
4.
Hosseinnia
,
S. H.
,
Ghaderi
,
R.
,
Ranjbar
,
A.
,
Mahmoudian
,
M.
, and
Momani
,
S.
,
2010
, “
Sliding Mode Synchronization of an Uncertain Fractional Order Chaotic System
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1637
1643
.
5.
Man
,
Z.
,
Paplinski
,
A. P.
, and
Wu
,
H. R.
,
1994
, “
A Robust MIMO Terminal Sliding Mode Control for Rigid Robotic Manipulators
,”
IEEE Trans. Autom. Control
,
39
(
12
), pp.
2464
2469
.
6.
Levant
,
A.
, and
Fridman
,
L.
,
2002
, “
Higher Order Sliding Modes
,”
Sliding Mode Control in Engineering
,
J. P.
Barbot
and
W.
Perruguetti
, eds.,
Marcel Dekker
, New York, pp. 53–10.
7.
Abu-Rmileh
,
A.
,
Garcia-Gabin
,
W.
, and
Zambrano
,
D.
,
2010
, “
Internal Model Sliding Mode Control Approach for Glucose Regulation in Type 1 Diabetes
,”
Biomed. Signal Process. Control
,
5
(
2
), pp.
94
102
.
8.
Gallardo
,
A. G.
, and
Fridman
,
L.
,
2013
, “
High-Order Sliding-Mode Control for Blood Glucose: Practical Relative Degree Approach
,”
Control Eng. Pract.
,
21
(
5
), pp.
747
758
.
9.
Yu
,
S.
,
Yu
,
X.
,
Shirinzadeh
,
B.
, and
Mand
,
Z.
,
2005
, “
Continuous Finite-Time Control for Robotic Manipulators With Terminal Sliding Mode
,”
Automatica
,
41
(
11
), pp.
1957
1964
.
10.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
, Upper Saddle River, NJ.
11.
Emelyanov
,
S. V.
,
Korovin
,
S. K.
, and
Levant
,
A.
,
1996
, “
A Higher Sliding Modes in Control Systems
,”
Comput. Math. Model.
,
7
(
3
), pp.
294
318
.https://link.springer.com/article/10.1007/BF01128162
12.
Kolesnikov
,
A. A.
,
Veselov
,
G.
, and
Kolesnikov Al
,
A.
,
2000
,
Modern Applied Control Theory: Synergetic Approach in Control Theory
, Vol.
2
,
TSURE Press
,
Moscow/Taganrog, Russia
(in Russian).
13.
Bergman
,
R. N.
,
Philips
,
L.
, and
Cobelli
,
C.
,
1981
, “
Physiological Evaluation of the Factors Controlling Glucose Tolerance in Man
,”
J. Clin. Invest.
,
68
(
6
), pp.
1456
1467
.
14.
Fisher
,
M. E.
, and
Szmi
,
A.
,
1991
, “
Closed-Loop Algorithm for Control of Blood Glucose Levels in Diabetics
,”
IEEE Trans. Biomed. Eng.
,
38
(
1
), pp.
57
61
.
15.
Hachana
,
A.
, and
Harmas
,
M. N.
,
2016
, “
Synergetic and Higher Order Sliding Mode Control of Blood Glucose Regulation in Diabetes Patients
,” Fifth International Conference on Systems and Control
(
ICSC
2016), Marrakesh, Morocco, May 25–27, pp. 192–197.
You do not currently have access to this content.