In this paper, the problem of icing detection is considered for wind turbines (WTs) operating in medium speed wind region (region 2) and subject to a control law tracking the maximum delivery point of the power coefficient characteristic. Based on a robust observer of the rotor angular acceleration, rotor inertia is estimated in order to detect its eventual increase due to icing. Moreover, the observed value of rotor inertia can be potentially used for updating the controller parameters or to stop the turbine when icing is too severe. The proposed approach has been tested by intensive MatLab® simulations using the National Renewable Energy Laboratory 5 MW WT model.

References

References
1.
Lehtomki
,
V.
,
Rissanen
,
S.
,
Wadham-Gagnon
,
M.
,
Sandel
,
K.
,
Moser
,
W.
, and
Jacob
,
D.
,
2016
, “
Fatigue Loads of Iced Turbines: Two Case Studies
,”
J. Wind Eng. Ind. Aerodyn.
,
158
, pp.
37
50
.
2.
Parent
,
O.
, and
Ilinca
,
A.
,
2011
, “
Anti-Icing and De-Icing Techniques for Wind Turbines—A Critical Review
,”
Cold Reg. Sci. Technol.
,
65
(
1
), pp.
88
96
.
3.
Fortin
,
G.
,
Perron
,
J.
, and
Ilinca
,
A.
,
2005
, “
A Study of Icing Events at Murdochville: Conclusions for the Wind Power Industry
,”
International Symposium, Wind Energy in Remote Regions
, Magdalene Islands, QC, Canada, Oct. 19–21, pp. 1–9.
4.
Pryor
,
S. C.
, and
Barthelmie
,
R. J.
,
2010
, “
Climate Change Impacts on Wind Energy: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
430
437
.
5.
Saleh
,
S.
,
Ahshan
,
R.
, and
Moloney
,
C.
,
2012
, “
Wavelet-Based Signal Processing Method for Detecting Ice Accretion on Wind Turbines
,”
IEEE Trans. Sustainable Energy
,
3
(
3
), pp.
585
597
.
6.
Pedersen
,
M. C.
, and
Yin
,
C.
,
2014
, “
Preliminary Modelling Study of Ice Accretion on Wind Turbines
,”
Energy Procedia
,
61
, pp.
258
261
.
7.
Skrimpas
,
G. A.
,
Sweeney
,
C. W.
,
Marhadi
,
K. S.
,
Jensen
,
B. B.
,
Mijatovic
,
N.
, and
Holbll
,
J.
,
2015
, “
Employment of Kernel Methods on Wind Turbine Power Performance Assessment
,”
IEEE Trans. Sustainable Energy
,
6
(
3
), pp.
698
706
.
8.
Stewart
,
G.
, and
Lackner
,
M.
,
2013
, “
Offshore Wind Turbine Load Reduction Employing Optimal Passive Tuned Mass Damping Systems
,”
IEEE Trans. Control Syst. Technol.
,
21
(
4
), pp.
1090
1104
.
9.
Sabatier
,
J.
,
Lanusse
,
P.
,
Feytout
,
B.
, and
Gracia
,
S.
,
2016
, “
CRONE Control Based Anti-Icing/Deicing System for Wind Turbine Blades
,”
Control Eng. Pract.
,
56
, pp.
200
209
.
10.
Shajiee
,
S.
,
Pao
,
L. Y.
, and
McLeod
,
R. R.
,
2014
, “
Optimizing the Layout of Heaters for Distributed Active De-Icing of Wind Turbine Blades
,”
Wind Eng.
,
38
(
6
), pp.
587
600
.
11.
Shajiee
,
S.
,
2015
, “
Direct Optical Ice Sensing and Closed-Loop Controller Design for Active De-Icing of Wind Turbines Using Distributed Heating
,”
Ph.D. thesis
, University of Colorado at Boulder, Boulder, CO.
12.
Shajiee
,
S.
,
Pao
,
L. Y.
, and
McLeod
,
R. R.
,
2014
,
Monitoring Ice Accumulation and Active De-Icing Control of Wind Turbine Blades
,
Springer International Publishing
, Cham, Switzerland, pp.
193
230
.
13.
Dalili
,
N.
,
Edrisy
,
A.
, and
Carriveau
,
R.
,
2009
, “
A Review of Surface Engineering Issues Critical to Wind Turbine Performance
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
428
438
.
14.
Homola
,
M.
,
Nicklasson
,
P.
, and
Sundsbo
,
P.
,
2006
, “
Ice Sensors for Wind Turbines
,”
Cold Reg. Sci. Technol.
,
46
(
2
), pp.
125
131
.
15.
Wang
,
Z.
,
2017
, “
Recent Progress on Ultrasonic De-Icing Technique Used for Wind Power Generation, High-Voltage Transmission Line and Aircraft
,”
Energy Build.
,
140
, pp.
42
49
.
16.
Fakorede
,
O.
,
Feger
,
Z.
,
Ibrahim
,
H.
,
Ilinca
,
A.
,
Perron
,
J.
, and
Masson
,
C.
,
2016
, “
Ice Protection Systems for Wind Turbines in Cold Climate: Characteristics, Comparisons and Analysis
,”
Renewable Sustainable Energy Rev.
,
65
, pp.
662
675
.
17.
Farzaneh
,
M.
,
Volat
,
C.
, and
Leblond
,
A.
,
2008
,
Anti-Icing and De-Icing Techniques for Overhead Lines
,
Springer
,
Dordrecht, The Netherlands
, pp.
229
268
.
18.
Battisti
,
L.
,
2015
,
Wind Turbines in Cold Climates: Icing Impacts and Mitigation Systems
,
Springer
,
Cham, Switzerland
.
19.
ISO
,
2001
, “
Atmospheric Icing of Structures: First Edition
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
12494-2001
.
20.
Makkonen
,
L.
,
2000
, “
Models for the Growth of Rime, Glaze, Icicles and Wet Snow on Structures
,”
Philos. Trans. R. Soc. London A
,
358
(
1776
), pp.
2913
2939
.
21.
Frohboese
,
P.
, and
Anders
,
A.
,
2007
, “
Effects of Icing on Wind Turbine Fatigue Loads
,”
J. Phys.: Conf. Ser.
,
75
, p.
012061
.
22.
Myers
,
T. G.
,
2001
, “
Extension to the Messinger Model for Aircraft Icing
,”
AIAA J.
,
39
(
2
), pp.
211
218
.
23.
Zaragoza
,
J.
,
Pou
,
J.
,
Arias
,
A.
,
Spiteri
,
C.
,
Robles
,
E.
, and
Ceballos
,
S.
,
2011
, “
Study and Experimental Verification of Control Tuning Strategies in a Variable Speed Wind Energy Conversion System
,”
Renewable Energy
,
36
(
5
), pp.
1421
1430
.
24.
Bianchi
,
F. D.
,
Battista
,
H. N. D.
, and
Mantz
,
R. J.
,
2007
,
Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design
,
Springer-Verlag
,
Berlin
.
25.
Corradini
,
M. L.
, and
Ippoliti
,
G.
, and
Orlando
,
G.
,
2013
, “
Robust Control of Variable-Speed Wind Turbines Based on an Aerodynamic Torque Observer
,”
IEEE Trans. Control Syst. Technol.
,
21
(
4
), pp.
1199
1206
.
26.
Utkin
,
V.
,
1992
,
Sliding Modes in Control and Optimization
,
Springer-Verlag
,
Berlin
.
27.
Jonkman
,
J.
,
2015
, “
NWTC Design Codes—FAST
,” National Renewable Energy Laboratory, Golden, CO, accessed July 31, 2017, http://wind.nrel.gov/designcodes/simulators/fast/
28.
Buhl
,
M. L.
, and
Manjock
,
A.
,
2006
, “
A Comparison of Wind Turbine Aeroelastic Codes Used for Certification
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/CP-500-39113
.
29.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-500-38060
.
You do not currently have access to this content.