A novel application of the adaptive fuzzy sliding-mode control (AFSMC) to the case of an antilock braking system (ABS) is proposed in this paper. ABS is a system in vehicles that allows the wheels to maintain tractive contact with the road and avoid uncontrolled skidding. By using ABS, the stopping distances on dry and slippery surfaces are expected to decrease. The maximum braking force is a nonlinear function of the slip ratios of the wheels, which is sensitive to the vehicle weight and road condition. In this research, a simple low-order model of the braking dynamics is considered and unmodeled dynamics are taken as uncertainties. The robust AFSMC method is used to regulate the wheel slip ratio toward the desired value. The proposed controller employs pulse width modulation (PWM) to generate the braking torque. There is no need to use any reference measured data or experimental knowledge of relevant experts to design the controller. A clear advantage is that the designed controller does not rely on the nonlinear tire–road friction model. The second Lyapunov theorem is employed to prove the closed-loop asymptotic stability. In the simulations, the multibody dynamics method is used for modeling the longitudinal motion of SAIPA X100 and X200 vehicle platforms. Furthermore, the actuation and the switching dynamics of the braking system are taken into account. Resulting performance is compared to the conventional sliding-mode and feedback linearization methods. Analysis of the simulation results reveals the effectiveness of proposed AFSMC method.

References

References
1.
Poursamad
,
A.
,
2009
, “
Adaptive Feedback Linearization Control of Antilock Braking Systems Using Neural Networks
,”
Mechatronics
,
19
(
5
), pp.
767
773
.
2.
Topalov
,
A. V.
,
Oniz
,
Y.
,
Kayacan
,
E.
, and
Kaynak
,
O.
,
2011
, “
Neuro-Fuzzy Control of Antilock Braking System Using Sliding Mode Incremental Learning Algorithm
,”
Neurocomputing
,
74
(
11
), pp.
1883
1893
.
3.
Cirovic
,
V.
, and
Aleksendric
,
D.
,
2013
, “
Adaptive Neuro-Fuzzy Wheel Slip Control
,”
Expert Syst. Appl.
,
40
(
13
), pp.
5197
5209
.
4.
Mirzaei
,
M.
, and
Mirzaeinejad
,
H.
,
2012
, “
Optimal Design of a Non-Linear Controller for Anti-Lock Braking System
,”
Transp. Res., Part C
,
24
, pp.
19
35
.
5.
Mirzaeinejad
,
H.
, and
Mirzaei
,
M.
,
2010
, “
A Novel Method for Non-Linear Control of Wheel Slip in Anti-Lock Braking Systems
,”
Control Eng. Pract.
,
18
(
8
), pp.
918
926
.
6.
Mirzaeinejad
,
H.
, and
Mirzaei
,
M.
,
2014
, “
Optimization of Nonlinear Control Strategy for Anti-Lock Braking System With Improvement of Vehicle Directional Stability on Split-μ Roads
,”
Transp. Res., Part C
,
46
, pp.
1
15
.
7.
Bhandari
,
R.
,
Patil
,
S.
, and
Singh
,
R. K.
,
2012
, “
Surface Prediction and Control Algorithms for Anti-Lock Brake System
,”
Transp. Res., Part C
,
21
(
1
), pp.
181
195
.
8.
Harifi
,
A.
,
Aghagolzadeh
,
A.
,
Alizadeh
,
G.
, and
Sadeghi
,
M.
,
2008
, “
Designing a Sliding Mode Controller for Slip Control of Antilock Brake Systems
,”
Transp. Res., Part C
,
16
(
6
), pp.
731
741
.
9.
Sanchez-Torres
,
J. D.
,
Loukianov
,
A. G.
,
Galicia
,
M. I.
, and
Rivera
,
J.
, 2011, “
A Sliding Mode Regulator for Antilock Brake System
,”
18th IFAC World Congress
, Milan, Italy, Aug. 28–Sept. 2, pp.
7187
7192
.
10.
Wu
,
M.-C.
, and
Shih
,
M.-C.
,
2001
, “
Using the Sliding-Mode PWM Method in an Anti-Lock Braking System
,”
Asian J. Control
,
3
(
3
), pp.
255
261
.
11.
Wu
,
M.-C.
, and
Shih
,
M.-C.
,
2003
, “
Simulated and Experimental Study of Hydraulic Anti-Lock Braking System Using Sliding-Mode PWM Control
,”
Mechatronics
,
13
(
4
), pp.
331
351
.
12.
Atia
,
M. R. A.
,
Haggag
,
S. A.
, and
Kamal
,
A. M. M.
,
2016
, “
Enhanced Electromechanical Brake-by-Wire System Using Sliding Mode Controller
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
4
), p.
041003
.
13.
Li
,
J.
,
Song
,
Z.
,
Shuai
,
Z.
,
Xu
,
L.
, and
Ouyang
,
M.
,
2015
, “
Wheel Slip Control Using Sliding-Mode Technique and Maximum Transmissible Torque Estimation
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
11
), p.
111010
.
14.
Tang
,
Y.
,
Zhang
,
X.
,
Zhang
,
D.
,
Zhao
,
G.
, and
Guan
,
X.
,
2013
, “
Fractional Order Sliding Mode Controller Design for Antilock Braking Systems
,”
Neurocomputing
,
111
, pp.
122
130
.
15.
Oniz
,
Y.
,
Kayacan
,
E.
, and
Kaynak
,
O.
,
2007
, “
Simulated and Experimental Study of Antilock Braking System Using Grey Sliding Mode Control
,”
IEEE International Conference on Systems, Man and Cybernetics
(
ISCMC
), Montreal, QC, Canada, Oct. 7–10, pp.
90
95
.
16.
Nyandoro
,
O. T. C.
,
Pedro
,
J. O.
,
Dahunsi
,
O. A.
, and
Dwolatzky
,
B.
, 2011, “
Linear Slip Control Formulation for Vehicular Anti-Lock Braking System With Suspension Effects
,”
18th IFAC World Congress
, Milan, Italy, Aug. 28–Sept. 2, pp.
4779
4784
.
17.
Nyandoro
,
O. T. C.
,
Pedro
,
J. O.
,
Dwolatzky
,
B.
, and
Dahunsi
,
O. A.
, 2011, “
State Feedback Based Linear Slip Control Formulation for Vehicular Antilock Braking System
,” World Congress on Engineering (
WEC
), London, July 6–8, pp. 1–6.
18.
Poursamad
,
A.
, and
Davaie-Markazi
,
A. H.
,
2009
, “
Robust Adaptive Fuzzy Control of Unknown Chaotic Systems
,”
Appl. Soft Comput.
,
9
(
3
), pp.
970
976
.
19.
Poursamad
,
A.
, and
Markazi
,
A. H. D.
,
2009
, “
Adaptive Fuzzy Sliding-Mode Control for Multi-Input Multi-Output Chaotic Systems
,”
Chaos, Solitons Fractals
,
42
(
5
), pp.
3100
3109
.
20.
Yoo
,
B.
, and
Ham
,
W.
,
1998
, “
Adaptive Fuzzy Sliding Mode Control of Nonlinear System
,”
IEEE Trans. Fuzzy Syst.
,
6
(2), pp.
315
321
.
21.
Hwang
,
C.-L.
, and
Kuo
,
C.-Y.
,
2001
, “
A Stable Adaptive Fuzzy Sliding-Mode Control for Affine Nonlinear Systems With Application to Four-Bar Linkage Systems
,”
IEEE Trans. Fuzzy Syst.
,
9
(
2
), pp.
238
252
.
22.
Lhee
,
C.-G.
,
Park
,
J.-S.
,
Ahn
,
H.-S.
, and
Kim
,
D.-H.
,
2001
, “
Sliding Mode-Like Fuzzy Logic Control With Self-Tuning the Dead Zone Parameters
,”
IEEE Trans. Fuzzy Syst.
,
9
(
2
), pp.
343
348
.
23.
Ho
,
H.
,
Wong
,
Y.
, and
Rad
,
A.
,
2009
, “
Adaptive Fuzzy Sliding Mode Control With Chattering Elimination for Nonlinear SISO Systems
,”
Simul. Modell. Pract. Theory
,
17
(
7
), pp.
1199
1210
.
24.
Tong
,
S.
, and
Li
,
H.-X.
,
2003
, “
Fuzzy Adaptive Sliding-Mode Control for MIMO Nonlinear Systems
,”
IEEE Trans. Fuzzy Syst.
,
11
(
3
), pp.
354
360
.
25.
Lin
,
C.-M.
, and
Hsu
,
C.-F.
,
2003
, “
Self-Learning Fuzzy Sliding-Mode Control for Antilock Braking Systems
,”
IEEE Trans. Control Syst. Technol.
,
11
(
2
), pp.
273
278
.
26.
Tang
,
Y.
,
Wang
,
Y.
,
Han
,
M.
, and
Lian
,
Q.
,
2016
, “
Adaptive Fuzzy Fractional-Order Sliding Mode Controller Design for Antilock Braking Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
4
), p.
041008
.
27.
John
,
S.
,
2012
, “
Development of Nonlinear Real-Time Intelligent Controllers for Anti-Lock Braking Systems (ABS)
,”
Ph.D. thesis
, University of the Witwatersrand, Johannesburg, South Africa.
28.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
29.
Astrom
,
K. J.
, and
Wittenmark
,
B.
,
1995
,
Adaptive Control
,
Addison-Wesley Publishing
, Boston, MA.
30.
Pacejka
,
H.
,
2012
,
Tire and Vehicle Dynamics
,
Butterworth-Heinemann
, Oxford, UK.
31.
Bakker
,
E.
,
Nyborg
,
L.
, and
Pacejka
,
H.
,
1987
, “
Tyre Modelling for Use in Vehicle Dynamics Studies
,”
SAE
Paper No. 870421.
32.
ISO
,
2000
, “
Reporting Vehicle Road Surface Irregularities
,” International Organization for Standardization, Geneva, Switzerland, Technical Report No. ISO/TC108/SC2/WG4 N57.
33.
Choi
,
S. B.
,
2008
, “
Antilock Brake System With a Continuous Wheel Slip Control to Maximize the Braking Performance and the Ride Quality
,”
IEEE Trans. Control Syst. Technol.
,
16
(
5
), pp.
996
1003
.
You do not currently have access to this content.