Robust control often requires some adaptive approach in evaluating systems dynamics to handle parameters variations and external disturbances. Therefore, an error due to dynamics approximation is inevitably added to uncertainties already present in the model. This issue is addressed in this paper, through the combination of two robust techniques, Hinf and synergetic control. These latter are used to ensure reducing tracking error in the overall closed-loop system while guaranteeing stability via Lyapunov synthesis. With the aim of handling parameters variations, an indirect adaptive fuzzy scheme is used to elaborate system model. Simulation studies are conducted to assess the proposed approach on two practical systems, and the results are compared to a sliding mode proportional integral (PI)-based technique. It is to be noted that a large class of systems depicted as control affine systems will be considered in this paper. An induction motor and an inverted pendulum representing, respectively, a linear and a nonlinear system are utilized in this study showing improvement due to the suggested approach, in overall performance over its sliding mode control counterpart.

References

1.
Lin
,
C. M.
, and
Hsu
,
C. F.
,
2004
, “
Adaptive Fuzzy Sliding Mode Control for Induction Servomotor Systems
,”
IEEE Trans Energy Conv.
,
19
(
2
), pp.
362
368
.
2.
Ho
,
H. F.
, and
Cheng
,
K. W. E.
,
2009
, “
Position Control of Induction Motor Using Indirect Adaptive Fuzzy Sliding Mode Control
,”
Third International Conference of the IEEE Power Electronics System and Application
(
PESA
), Hong Kong, China, May 20–22, pp. 1–5.
3.
Ho
,
H. F.
,
Wong
,
Y. K.
, and
Rad
,
A. B.
,
2009
, “
Adaptive Fuzzy Sliding Mode Control With Chattering Elimination for Nonlinear SISO Systems
,”
Simul. Model. Pract. Theory
,
17
(
7
), pp.
1199
1210
.
4.
Jiang
,
Z.
, and
Dougal
,
R.
,
2004
, “
Synergetic Control of Power Converters for Pulse Current Charging of Advanced Batteries From a Fuel Cell Power Source
,”
IEEE Trans. Power Electron.
,
19
(
4
), pp.
1140
1150
.
5.
Kondratiev
,
I.
,
Santi
,
E.
,
Dougal
,
R. A.
, and
Veselov
,
G.
,
2004
, “
Synergetic Control for m-Parallel Connected DC-DC Buck Converters
,”
IEEE Power Electronics Specialists Conference
(
PESC
), Aachen, Germany, June 20–25, pp.
182
188
.
6.
Jiang
,
Z.
,
2009
, “
Design of a Nonlinear Power System Stabilizer Using Synergetic Control Theory
,”
Electr. Power Syst. Res.
,
79
(
6
), pp.
855
862
.
7.
Lidozzi
,
A.
,
Solero
,
L.
,
Di Napoli
,
A.
, and
Crescimbini
,
F.
,
2005
, “
Synergetic Control for Ultra-Capacitors Based High Dynamic Converters
,” IEEE Applied Power Electronics Conference and Exposition (
APEC
), Austin, TX, Mar. 6–10, pp. 1976–1982.
8.
Kondratiev
,
I.
, and
Dougal
,
R.
,
2006
, “
General Synergetic Control Strategies for Arbitrary Number of Paralleled Buck Converters Feeding Constant Power Load: Implementation of Dynamic Current Sharing
,”
IEEE International Symposium on Industrial Electronics
(
ISIE
), Montreal, QC, Canada, July 9–13, pp. 257–261.
9.
Loginov
,
D.
,
2011
, “
Possibilities of Modeling the Creative Part of Engineering Design Process Using the Synergetic Approach
,”
Int. J. Math. Models Methods Appl. Sci.
,
5
(
1
), pp.
95
104
.
10.
Bouchama
,
Z.
, and
Harmas
,
M. N.
,
2012
, “
Optimal Robust Adaptive Fuzzy Synergetic Power System Stabilizer Design
,”
Electr. Power Syst. Res.
,
83
(
1
), pp.
170
175
.
11.
Nechadi
,
E.
,
Harmas
,
M. N.
,
Hamzaoui
,
A.
, and
Essounbouli
,
N.
,
2012
, “
Type-2 Fuzzy Based Adaptive Synergetic Power System Control
,”
Electr. Power Syst. Res.
,
88
, pp.
9
15
.
12.
Furuya
,
H. S.
, and
Irisawa
,
J.
,
2006
, “
A Robust H∞ Power System Stabilizer Design Using Reduced-Order Models
,”
Int. J. Electr. Power Energy Syst.
,
28
(1), pp.
21
28
.
13.
Kolesnikov
,
A.
, and
Veselov
,
A.
,
2000
, Modern Applied Control Theory: Synergetic Approach in Control Theory, Vol.
2
,
TSURE Press
,
Taganrog, Russia
.
14.
Kolesnikov
,
A.
,
Veselov
,
G.
,
Kolesnikov
,
A.
,
Monti
,
A.
,
Ponci
,
F.
,
Santi
,
E.
, and
Dougal
,
R.
,
2002
, “
Synergetic Synthesis of DC-DC Boost Converter Controllers: Theory and Experimental Analysis
,”
17th Annual IEEE Applied Power Electronics Conference
(
APEC
), Dallas, TX, Mar. 10–14, pp.
409
415
.
15.
Monti
,
A.
,
Santi
,
E.
,
Proddutur
,
K.
, and
Dougal
,
R. A.
,
2003
, “
Synergetic Control for DC-DC Boost Converter: Implementation Options
,”
IEEE Trans. Ind. Appl.
,
39
(6), pp.
1803
1813
.
16.
Runkler
,
T. A.
, and
Glesner
,
M.
,
1994
, “
Defuzzification and Ranking in the Context of Membership Value Semantics, Rule Modality, and Measurement Theory
,”
European Congress on Fuzzy and Intelligent Technologies
, Aachen, Germany, Sept. 20–23.
17.
Sugeno
,
M.
, and
Kang
,
G. T.
,
1988
, “
Structure Identification of Fuzzy Model
,”
Fuzzy Sets Syst.
,
28
(
1
), pp.
15
33
.
18.
Wang
,
L. X.
,
1992
, “
Fuzzy Systems are Universal Approximators
,”
IEEE
Conference on Fuzzy Systems
, San Diego, CA, Mar. 8–12, pp.
1163
1170
.
19.
Hou
,
M.
,
Duan
,
G.
, and
Guo
,
M.
,
2010
, “
New Versions of Barbalat's Lemma With Applications
,”
J. Control Theory Appl.
,
8
(
4
), pp.
554
547
.
20.
Doyle
,
J.
,
Glover
,
K.
,
Khargonekar
,
P. P.
, and
Francis
,
B. A.
,
1989
, “
State Space Solution to Standard H∞ Control Problems
,”
IEEE Trans. Autom. Control
,
34
(
8
), pp.
831
884
.
21.
Bose
,
B. K.
,
1986
,
Power Electronics and AC Drivers
,
Prentice Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.