This paper presents a novel linear parameter-varying (LPV) model of an electro-hydraulic variable valve actuator (EHVVA) for internal combustion engines that is capable of continuously varying valve timing with dual-lift. The dual-lift is realized mechanically through a hydraulic lift control sleeve; valve opening (VO) terminal and closing seating velocities are regulated using a top or bottom snubber; and opening and closing timings, as well as lift profile area, are controlled by the valve actuation timing and hydraulic supply pressure. First, nonlinear mathematical system model is developed based on the Newton's law, orifice flow equation, and fluid constitutive law, where the fluid dynamics of the actuation solenoid valve, actuation piston, passages, and orifices, that influence the engine valve profile, are considered in detail. Second, to have an LPV control-oriented model, the order of nonlinear model is reduced and subsequently transformed into an LPV model with minimal deviation by carefully considering the system nonlinearities, time delay, and time-varying parameters. Calibration and validation experiments for both nonlinear and LPV models were performed on the test bench under different operational conditions. The key time-varying parameters, the time constant of the actuation piston top pressure and the discharge coefficient, are highly nonlinear as functions of temperature-sensitive fluid viscosity and are determined using the test data through the least-squares optimization. With the identified and calibrated model parameters, simulation results of both nonlinear and LPV models are in good agreement with the experimental ones under different operational conditions.

References

References
1.
Chan
,
C. C.
,
1999
, “
The Past, Present, and Future of Electric Vehicle Development
,”
IEEE International Conference on Power Electronics and Drive Systems
(
PEDS
), Hong Kong, July 27–29, pp.
11
13
.
2.
Situ
,
L.
,
2009
, “
Electric Vehicle Development: The Past, Present & Future
,”
Third International Conference on Power Electronics Systems and Applications
(
PESA
), Hong Kong, China, May 20–22, pp.
1
3
http://ieeexplore.ieee.org/document/5228601/.
3.
Lancefield
,
T.
,
2003
, “
The Influence of Variable Valve Actuation on the Part Load Fuel Economy of a Modern Light-Duty Diesel Engine
,”
SAE
Paper No. 2003-01-0028.
4.
Tai
,
C.
,
Tsao
,
T.
,
Schörn
,
N.
, and
Levin
,
M.
,
2002
, “
Increasing Torque Output From a Turbodiesel With Camless Valve Train
,”
SAE
Paper No. 2002-01-1108.
5.
Negurescu
,
N.
,
Pana
,
C.
,
Popa
,
M.
, and
Racovitza
,
A.
,
2001
, “
Variable Valve Control Systems for Spark Ignition Engine
,”
SAE
Paper No. 2001-01-0671.
6.
Zhang
,
S.
,
Huisjen
,
A.
,
Zhu
,
G.
, and
Schock
,
H.
,
2016
, “
Improvement in the Combustion Mode Transition for an HCCI Capable SI Engine
,”
Proc Inst. Mech. Eng., Part D
,
230
(
2
), pp.
215
228
.
7.
Flierl
,
R.
,
Paulov
,
M.
,
Knecht
,
A.
, and
Hannibal
,
W.
,
2008
, “
Investigations With a Mechanically Fully Variable Valve Train on a 2.0l Turbo Charged Four Cylinder Engine
,”
SAE
Paper No. 2008-01-1352.
8.
Flierl
,
R.
,
Hofman
,
R.
,
Landerl
,
C.
,
Melcher
,
T.
, and
Steyer
,
H.
,
2001
, “
Der neue BMW Vierzylindermotor mit Valvetronic—Teil 1: Konzept und konstruktiver Aufbau (The New BMW Four Cylinder Engine With Valvetronic—Part 1: Concept and Design)
,”
MTZ Motortech. Z.
,
62
(
6
), pp.
450
463
.
9.
Dugdale
,
P. H.
,
Rademacher
,
R. J.
,
Price
,
B. R.
,
Subhedar
,
J. W.
, and
Duguay
,
R. L.
,
2005
, “
Ecotec 2.4L VVT: A Variant of GM's Global 4-Cylinder Engine
,”
SAE
Paper No. 2005-01-1941.
10.
Ren
,
Z.
, and
Zhu
,
G.
,
2011
, “
Integrated System ID and Control Design for an IC Engine Variable Valve Timing System
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
2
), p.
021012
.
11.
Ren
,
Z.
, and
Zhu
,
G.
,
2013
, “
Modeling and Control of an Electrical Variable Valve Timing Actuator
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
2
), p.
021015
.
12.
Zhang
,
S.
,
Song
,
R.
,
Zhu
,
G.
, and
Schock
,
H.
,
2017
, “
Model-Based Control for Mode Transition Between SI and HCCI Combustion
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
4
), p.
041004
.
13.
Lou
,
Z.
,
2007
, “
Camless Variable Valve Actuation Designs With Two-Spring Pendulum and Electrohydraulic Latching
,”
SAE
Paper No. 2007-01-1295.
14.
Gillella
,
P.
, and
Sun
,
Z.
,
2011
, “
Design, Modeling, and Control of a Camless Valve Actuation System With Internal Feedback
,”
IEEE/ASME Trans. Mechatronics
,
16
(
3
), pp.
527
539
.
15.
Sun
,
Z.
, and
Kuo
,
T. W.
,
2010
, “
Transient Control of Electro-Hydraulic Fully Flexible Engine Valve Actuation System
,”
IEEE Trans. Control Syst. Technol.
,
18
(
3
), pp.
613
621
.
16.
Sugimoto
,
C.
,
Sakai
,
H.
,
Umemoto
,
A.
,
Shimizu
,
Y.
, and
Ozawa
,
H.
,
2004
, “
Study on Variable Valve Timing System Using Electromagnetic Mechanism
,”
SAE
Paper No. 2004-01-1869.
17.
Theobald
,
M. A.
,
Lequesne
,
B.
, and
Henry
,
R. R.
,
1994
, “
Control of Engine Load Via Electromagnetic Operating Actuator
,”
SAE
Paper No. 940816.
18.
Hoffmann
,
W.
,
Peterson
,
K.
, and
Stefanopoulou
,
A. G.
,
2003
, “
Iterative Learning Control for Soft Landing of Electromechanical Valve Actuator in Camless Engines
,”
IEEE Trans. Control Syst. Technol.
,
11
(
2
), pp.
174
184
.
19.
Watson
,
J. P.
, and
Wakeman
,
R. J.
,
2005
, “
Simulation of a Pneumatic Valve Actuation System for Internal Combustion Engine
,”
SAE
Paper No. 2005-01-0771.
20.
Lou
,
Z.
,
Deng
,
Q.
,
Wen
,
S.
,
Zhang
,
Y.
,
Yu
,
M.
,
Sun
,
M.
, and
Zhu
,
G.
,
2013
, “
Progress in Camless Variable Valve Actuation With Two-Spring Pendulum and Electrohydraulic Latching
,”
SAE Int. J. Engines
,
6
(
1
), pp.
319
326
.
21.
Lou
,
Z.
,
Wen
,
S.
,
Qian
,
J.
,
Xu
,
H.
,
Zhu
,
G.
, and
Sun
,
M.
,
2015
, “
Camless Variable Valve Actuator With Two Discrete Lifts
,”
SAE
Paper No. 2015-01-0324.
22.
Richeson
,
W. E.
, and
Erickson
,
F. L.
, 1989, “
Pneumatic Actuator With Permanent Magnet Control Valve Latching
,” Magnavox, Torrance, CA, U.S. Patent No. 4,852,528.
23.
Ma
,
J.
,
Zhu
,
G.
, and
Schock
,
H.
,
2010
, “
A Dynamic Model of an Electro-Pneumatic Valve Actuator for Internal Combustion Engines
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
2
), p.
021007
.
24.
Ma
,
J.
,
Zhu
,
G.
, and
Schock
,
H.
,
2011
, “
Adaptive Control of a Pneumatic Valve Actuator for an Internal Combustion Engine
,”
IEEE Trans. Control Syst. Technol.
,
19
(
4
), pp.
730
743
.
25.
Ma
,
J.
,
Zhu
,
G.
,
Hartsig
,
A.
, and
Schock
,
H.
,
2008
, “
Model-Based Predictive Control of an Electro-Pneumatic Exhaust Valve for Internal Combustion Engines
,”
American Control Conference
(
ACC
), Seattle, WA, June 11–13, pp.
298
305
.
26.
Zhang
,
F.
,
Grigoriadis
,
K. M.
,
Franchek
,
M. A.
, and
Makki
, I
. H.
,
2007
, “
Linear Parameter-Varying Lean Burn Air–Fuel Ratio Control for a Spark Ignition Engine
,”
ASME J. Dyn. Syst. Meas. Control
,
129
(
4
), pp.
404
414
.
27.
White
,
A.
,
Choi
,
J.
, and
Zhu
,
G.
,
2013
, “
Dynamic, Output-Feedback, Gain-Scheduling Control of an Electric Variable Valve Timing System
,”
American Control Conference
(
ACC
), Washington, DC, June 17–19, pp.
3619
3624
.
28.
White
,
A.
,
Ren
,
Z.
,
Zhu
,
G.
, and
Choi
,
J.
,
2013
, “
Mixed H2/H∞ Observer-Based LPV Control of a Hydraulic Engine Cam Phasing Actuator
,”
IEEE Trans. Control Syst. Technol.
,
21
(
1
), pp.
229
238
.
29.
Wei
,
X.
, and
Re
,
L.
,
2007
, “
Gain Scheduled H∞ Control for Air Path Systems of Diesel Engines Using LPV Techniques
,”
IEEE Trans. Control Syst. Technol.
,
15
(
3
), pp.
406
415
.
30.
Zope
,
R.
,
Mohammadpour
,
J.
,
Grigoriadis
,
K.
, and
Franchek
,
M.
,
2010
, “
Robust Fueling Strategy for an SI Engine Modeled as an Linear Parameter Varying Time-Delayed System
,”
American Control Conference
(
ACC
), Baltimore, MD, June 30–July 2, pp.
4634
4639
.
31.
Partington
,
J.
,
2004
, “
Some Frequency-Domain Approaches to the Model Reduction of Delay Systems
,”
Annu. Rev. Control
,
28
(
1
), pp.
65
73
.
32.
White
,
F.
,
2010
,
Fluid Mechanics
,
7th ed.
,
McGraw-Hill Education
,
New York
, Chap. 6.
33.
Wu
,
F.
, and
Karolos
,
M. G.
,
2001
, “
LPV Systems With Parameter-Varying Time Delays: Analysis and Control
,”
Automatica
,
37
(
2
), pp.
221
229
.
34.
White
,
A.
,
Zhu
,
G.
, and
Choi
,
J.
,
2013
,
Linear Parameter Varying Control for Engineering Applications
,
Springer-Verlag
,
London
, Chap. 2.
35.
Nocedal
,
J.
, and
Wright
,
S. J.
,
1999
,
Numerical Optimization
,
Springer-Verlag
,
New York
, Chap. 4.
You do not currently have access to this content.