Positive real constraints on the closed-loop of linear systems guarantee stable interaction with arbitrary passive environments. Two such methods of H optimal controller synthesis subject to a positive real constraint are presented and demonstrated on numerical examples. The first approach is based on an established multi-objective optimal control framework using linear matrix inequalities and is shown to be overly restrictive and ultimately infeasible. The second method employs a sector transformation to substitute the positive real constraint with an equivalent H constraint. In two examples, this method is shown to be more reliable and displays little change in the achieved H norm compared to the unconstrained design, making it a promising tool for passivity-based controller design.

References

References
1.
Ortega
,
R.
,
Loría
,
A.
,
Nicklasson
,
P. J.
, and
Sira-Ramirez
,
H.
,
2013
,
Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical, and Electromechanical Applications
,
Springer Science & Business Media
, Springer-Verlag London, U.K.
2.
Vallery
,
H.
,
Veneman
,
J.
,
van Asseldonk
,
E.
,
Ekkelenkamp
,
R.
,
Buss
,
M.
, and
van Der Kooij
,
H.
,
2008
, “
Compliant Actuation of Rehabilitation Robots
,”
IEEE Rob. Autom. Mag.
,
15
(
3
), pp.
60
69
.
3.
Kottenstette
,
N.
, and
Antsaklis
,
P.
,
2010
, “
Relationships Between Positive Real, Passive Dissipative, & Positive Systems
,”
American Control Conference
(
ACC
), pp.
409
416
.
4.
Forbes
,
J. R.
,
2013
, “
Dual Approaches to Strictly Positive Real Controller Synthesis With a H2 Performance Using Linear Matrix Inequalities
,”
Int. J. Robust Nonlinear Control
,
23
(
8
), pp.
903
918
.
5.
Bernussou
,
J.
,
Geromel
,
J.
, and
Oliveira
,
M.
,
1999
, “
On Strict Positive Real Systems Design: Guaranteed Cost and Robustness Issues
,”
Syst. Control Lett.
,
36
(
2
), pp.
135
141
.
6.
Wang
,
S.
,
Zhang
,
G.
, and
Liu
,
W.
,
2010
, “
Dissipative Analysis and Control for Discrete-Time State-Space Symmetric Systems
,”
29th Chinese Control Conference
(
CCC
), pp.
2010
2015
.
7.
Chapel
,
J.
, and
Su
,
R.
,
1991
, “
Attaining Impedance Control Objectives Using H∞ Design Methods
,”
IEEE International Conference on Robotics and Automation
(
ROBOT
), pp. 1482–1487.
8.
Scherer
,
C.
,
Gahinet
,
P.
, and
Chilali
,
M.
,
1997
, “
Multi-Objective Output-Feedback Control via LMI Optimization
,”
IEEE Trans. Autom. Control
,
42
(
7
), pp.
896
911
.
9.
Safonov
,
M.
,
Jonckherre
,
E.
,
Vermaj
,
M.
, and
Limebeer
,
D.
,
1987
, “
Synthesis of Positive Real Multivariable Feedback Systems
,”
Int. J. Control
,
45
(
3
), pp.
817
842
.
10.
Bao
,
J.
, and
Lee
,
P. L.
,
2007
,
Process Control: The Passive Systems Approach
,
Springer-Verlag
,
London
.
11.
Bao
,
J.
,
Lee
,
P. L.
,
Wang
,
F.
, and
Zhou
,
W.
,
1998
, “
New Robust Stability Criterion and Robust Controller Synthesis
,”
Int. J. Robust Nonlinear Control
,
8
(
1
), pp.
49
59
.
12.
Brogliato
,
B.
,
Lozano
,
R.
,
Maschke
,
B.
, and
Egeland
,
O.
,
2007
,
Dissipative Systems Analysis and Control: Theory and Applications
,
Springer-Verlag
,
London
.
13.
Gahinet
,
P.
, and
Apkarian
,
P.
,
1994
, “
A Linear Matrix Inequality Approach to H∞ Control
,”
Int. J. Robust Nonlinear Control
,
4
(
4
), pp.
421
448
.
14.
Boyd
,
S.
,
El Ghaoui
,
L.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
1994
,
Linear Matrix Inequalities in System and Control Theory
,
SIAM
, University City Science Center, Philadelphia, PA.
15.
Anderson
,
B. D. O.
, and
Vongpanitlerd
,
S.
,
2006
,
Network Analysis and Synthesis: A Modern Systems Theory Approach
,
Dover Publications
, Mineola, NY.
16.
Scherer
,
C.
, and
Weiland
,
S.
,
2005
, “
Linear Matrix Inequalities in Control
,”
Lecture Notes
, Delft University of Technology, Delft, The Netherlands.
17.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
, Cambridge, UK.
18.
Apkarian
,
P.
, and
Noll
,
D.
,
2006
, “
Non-Smooth H∞ Synthesis
,”
IEEE Trans. Autom. Control
,
51
(
1
), pp.
71
86
.
19.
Apkarian
,
P.
, and
Noll
,
D.
,
2006
, “
Non=Smooth Optimization for Multidisk H∞ Synthesis
,”
Eur. J. Control
,
12
(
3
), pp.
229
244
.
20.
Blondel
,
V.
, and
Tsitsiklis
,
J. N.
,
1997
, “
NP-Hardness of Some Linear Control Design Problems
,”
SIAM J. Control Optim.
,
35
(
6
), pp.
2118
2127
.
21.
MathWorks,
2015
, “
Robust Control Toolbox R2015b
,” MathWorks, Natick, MA.
22.
Löfberg
,
J.
,
2004
, “
YALMIP: A Toolbox for Modeling and Optimization in MATLAB
,”
CACSD
Conference, pp. 284–289.
23.
Sturm
,
J.
,
1999
, “
Using SeDuMi 1.02, A Matlab Toolbox for Optimization Over Symmetric Cones
,”
Optim. Methods Software
,
11
, pp.
625
653
.
24.
Vanderborght
,
B.
,
Albu-Schäffer
,
A.
,
Bicchi
,
A.
,
Burdet
,
E.
,
Caldwell
,
D.
,
Carloni
,
R.
,
Catalano
,
M.
,
Eiberger
,
O.
,
Friedl
,
W.
,
Ganesh
,
G.
,
Garabini
,
M.
,
Grebenstein
,
M.
,
Grioli
,
G.
,
Haddadin
,
S.
,
Hoppner
,
H.
,
Jafari
,
A.
,
Laffranchi
,
M.
,
Lefeber
,
D.
,
Petit
,
F.
,
Stramigioli
,
S.
,
Tsagarakis
,
N.
,
Van Damme
,
M.
,
Van Ham
,
R.
,
Visser
,
L. C.
, and
Wolf
,
S.
,
2013
, “
Variable Impedance Actuators: A Review
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1601
1614
.
25.
Hindi
,
H. A.
,
Hassibi
,
B.
, and
Boyd
,
S. P.
,
1998
, “
Multi-Objective H2/H∞-Optimal Control via Finite Dimensional q-Parametrization and Linear Matrix Inequalities
,”
American Control Conference
(
ACC
), Vol.
5
,
IEEE
, Philadelphia, PA, pp.
3244
3249
.
26.
Scherer
,
C. W.
,
2000
, “
An Efficient Solution to Multi-Objective Control Problems With LMI Objectives
,”
Syst. Control Lett.
,
40
(
1
), pp.
43
57
.
You do not currently have access to this content.