This paper deals with a new systematic multimodel controller design for nonlinear systems. The design of local controllers based on performance requirements is incorporated with the concept of local models selection as an optimization problem. Gap metric and stability margin are used as measuring tool and operation space dividing criterion, respectively. The developed method provides support to design a simple structured multiple proportional-integral (PI) controller which guarantees both robust stability and time-domain performance specifications. The main advantages of the proposed method are avoiding model redundancy, not needing a priori knowledge about system, having simple structure, and easing the implementation. To evaluate the presented multimodel controller design procedure, three benchmark nonlinear systems are studied. Both simulations and experimental results prove the effectiveness of the proposed method in set point tracking and disturbance rejection.

References

References
1.
Du
,
J.
, and
Johansen
,
T. A.
,
2014
, “
Integrated Multimodel Control of Nonlinear Systems Based on Gap Metric and Stability Margin
,”
Ind. Eng. Chem. Res.
,
53
(
24
), pp.
10206
10215
.
2.
Du
,
J.
,
Song
,
C.
, and
Li
,
P.
,
2012
, “
Multimodel Control of Nonlinear Systems: An Integrated Design Procedure Based on Gap Metric and H∞ Loop Shaping
,”
Ind. Eng. Chem. Res.
,
51
(
9
), pp.
3722
3731
.
3.
Galán
,
O.
,
Romagnoli
,
J. A.
,
Palazočlu
,
A.
, and
Arkun
,
Y.
,
2003
, “
Gap Metric Concept and Implications for Multilinear Model-Based Controller Design
,”
Ind. Eng. Chem. Res.
,
42
(
10
), pp.
2189
2197
.
4.
Haj Salah
,
A. A.
,
Garna
,
T.
,
Ragot
,
J.
, and
Messaoud
,
H.
,
2016
, “
Transition and Control of Nonlinear Systems by Combining the Loop Shaping Design Procedure and the Gap Metric Theory
,”
Trans. Inst. Meas. Control
,
38
(
8
), pp.
1004
1020
.
5.
Zhang
,
R.
,
Alleyne
,
A. G.
, and
Carter
,
D. E.
,
2005
, “
Generalized Multivariable Gain Scheduling With Robust Stability Analysis
,”
ASME J. Dyn. Syst. Meas. Control
,
127
(
4
), pp.
668
687
.
6.
Tao
,
X.
,
Li
,
D.
,
Wang
,
Y.
,
Li
,
N.
, and
Li
,
S.
,
2015
, “
Gap Metric Based Multiple-Model Predictive Control With Polyhedral Stability Region
,”
Ind. Eng. Chem. Res.
,
54
(
45
), pp.
11319
11329
.
7.
Porfı́rio
,
C. R.
,
Almeida Neto
,
E.
, and
Odloak
,
D.
,
2003
, “
Multi-Model Predictive Control of an Industrial C3/C4 Splitter
,”
Control Eng. Pract.
,
11
(
7
), pp.
765
779
.
8.
Yang
,
Z.
,
Li
,
Y.
, and
Seem
,
J. E.
,
2015
, “
Multi-Model Predictive Control for Wind Turbine Operation Under Meandering Wake of Upstream Turbines
,”
Control Eng. Pract.
,
45
, pp.
37
45
.
9.
Martin
,
P. A.
,
Odloak
,
D.
, and
Kassab
,
F.
,
2013
, “
Robust Model Predictive Control of a Pilot Plant Distillation Column
,”
Control Eng. Pract.
,
21
(
3
), pp.
231
241
.
10.
Du
,
J.
,
Song
,
C.
, and
Li
,
P.
,
2009
, “
Application of Gap Metric to Model Bank Determination in Multilinear Model Approach
,”
J. Process Control
,
19
(
2
), pp.
231
240
.
11.
Du
,
J.
, and
Johansen
,
T. A.
,
2014
, “
A Gap Metric Based Weighting Method for Multimodel Predictive Control of MIMO Nonlinear Systems
,”
J. Process Control
,
24
(
9
), pp.
1346
1357
.
12.
Toscano
,
R.
,
2007
, “
Robust Synthesis of a PID Controller by Uncertain Multimodel Approach
,”
Inf. Sci.
,
177
(
6
), pp.
1441
1451
.
13.
Arslan
,
E.
,
Çamurdan
,
M. C.
,
Palazoglu
,
A.
, and
Arkun
,
Y.
,
2004
, “
Multimodel Scheduling Control of Nonlinear Systems Using Gap Metric
,”
Ind. Eng. Chem. Res
,
43
(
26
), pp.
8275
8283
.
14.
Murray-Smith
,
R.
, and
Johansen
,
T.
,
1997
,
Multiple Model Approaches to Nonlinear Modelling and Control
,
Taylor & Francis
, London.
15.
Rodrigues
,
M.
,
Sahnoun
,
M.
,
Theilliol
,
D.
, and
Ponsart
,
J. C.
,
2013
, “
Sensor Fault Detection and Isolation Filter for Polytopic LPV Systems: A Winding Machine Application
,”
J. Process Control
,
23
(
6
), pp.
805
816
.
16.
Rodrigues
,
M.
,
Theilliol
,
D.
,
Adam-Medina
,
M.
, and
Sauter
,
D.
,
2008
, “
A Fault Detection and Isolation Scheme for Industrial Systems Based on Multiple Operating Models
,”
Control Eng. Pract.
,
16
(
2
), pp.
225
239
.
17.
Liu
,
J.
,
Djurdjanovic
,
D.
,
Marko
,
K.
, and
Ni
,
J.
,
2009
, “
Growing Structure Multiple Model Systems for Anomaly Detection and Fault Diagnosis
,”
ASME J. Dyn. Syst. Meas. Control
,
131
(
5
), p.
051001
.
18.
Tan
,
W.
,
Marquez
,
H. J.
,
Chen
,
T.
, and
Liu
,
J.
,
2004
, “
Multimodel Analysis and Controller Design for Nonlinear Processes
,”
Comput. Chem. Eng
,
28
(
12
), pp.
2667
2675
.
19.
Du
,
J.
,
Song
,
C.
, and
Li
,
P.
,
2009
, “
Multilinear Model Control of Hammerstein-Like Systems Based on an Included Angle Dividing Method and the MLD-MPC Strategy
,”
Ind. Eng. Chem. Res.
,
48
(
8
), pp.
3934
3943
.
20.
Du
,
J.
,
Song
,
C.
,
Yao
,
Y.
, and
Li
,
P.
,
2013
, “
Multilinear Model Decomposition of MIMO Nonlinear Systems and Its Implication for Multilinear Model-Based Control
,”
J. Process Control
,
23
(
3
), pp.
271
281
.
21.
Zribi
,
A.
,
Chtourou
,
M.
, and
Djemal
,
M.
,
2016
, “
A Systematic Determination Approach of Model's Base Using Gap Metric for Nonlinear Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
3
), p.
031008
.
22.
Jalali
,
A. A.
, and
Golmohammad
,
H.
,
2012
, “
An Optimal Multiple-Model Strategy to Design a Controller for Nonlinear Processes: A Boiler-Turbine Unit
,”
Comput. Chem. Eng.
,
46
, pp.
48
58
.
23.
Du
,
J.
, and
Johansen
,
T. A.
,
2015
, “
Integrated Multilinear Model Predictive Control of Nonlinear Systems Based on Gap Metric
,”
Ind. Eng. Chem. Res.
,
54
(
22
), pp.
6002
6011
.
24.
Mahdianfar
,
S. O. H.
, and
Momeni
,
H. R.
,
2011
, “
Robust Multiple Model Adaptive Control: Modified Using v-Gap Metric
,”
Int. J. Robust Nonlinear Control
,
21
(
18
), pp.
2027
2063
.
25.
Toscano
,
R.
, and
Lyonnet
,
P.
,
2009
, “
Heuristic Kalman Algorithm for Solving Optimization Problems
,”
IEEE Trans. Syst. Man Cybern., Part B
,
39
(
5
), pp.
1231
1244
.
26.
Toscano
,
R.
, and
Lyonnet
,
P.
,
2009
, “
Robust PID Controller Tuning Based on the Heuristic Kalman Algorithm
,”
Automatica
,
45
(
9
), pp.
2099
2106
.
27.
Toscano
,
R.
,
2013
,
Structured Controllers for Uncertain Systems: A Stochastic Optimization Approach
,
Springer
,
London
.
28.
El-Sakkary
,
A.
,
1985
, “
The Gap Metric: Robustness of Stabilization of Feedback Systems
,”
IEEE Trans. Autom. Control
,
30
(
3
), pp.
240
247
.
29.
Georgiou
,
T. T.
, and
Smith
,
M. C.
,
1990
, “
Optimal Robustness in the Gap Metric
,”
IEEE Trans. Autom. Control
,
35
(
6
), pp.
673
686
.
30.
Zhou
,
K.
, and
Doyle
,
J. C.
,
1998
,
Essentials of Robust Control
,
Prentice Hall
, Upper Saddle River, NJ.
31.
Rodriguez
,
J. A.
,
Romagnoli
,
J. A.
, and
Goodwin
,
G. C.
,
2003
, “
Supervisory Multiple Regime Control
,”
J. Process Control
,
13
(
2
), pp.
177
191
.
32.
Angelis
,
G. Z.
,
2001
, “
System Analysis, Modelling and Control With Polytopic Linear Models
,”
Ph.D. thesis
, Eindhoven University of Technology, Eindhoven, The Netherlands.
33.
Galán
,
O.
,
Romagnoli
,
J. A.
, and
Palazoglu
,
A.
,
2004
, “
Real-Time Implementation of Multi-Linear Model-Based Control Strategies—An Application to a Bench-Scale pH Neutralization Reactor
,”
J. Process Control
,
14
(
5
), pp.
571
579
.
34.
Van de Wal
,
M.
,
Van Baars
,
G.
,
Sperling
,
F.
, and
Bosgra
,
O.
,
2002
, “
Multivariable H∞/μ Feedback Control Design for High-Precision Wafer Stage Motion
,”
Control Eng. Pract.
,
10
(
7
), pp.
739
755
.
You do not currently have access to this content.