This paper presents a new switching antiwindup compensation design to maximize the domain of attraction for a supercavitating vehicle subject to actuator saturation. The dive-plane dynamics of the vehicle are considered. By applying the linear differential inclusion expression of saturated feedbacks, conditions under which the compensator locally stabilizes the closed-loop system are then derived. The design of antiwindup gains on maximizing the system's domain of attraction is finally formulated and solved as an iterative optimization problem with linear matrix inequality constraints. Simulations are conducted for systems with magnitude and rate limits to evaluate the effectiveness of the proposed method.

References

References
1.
Dzielski
,
J.
, and
Kurdila
,
A.
,
2003
, “
A Benchmark Control Problem for Supercavitating Vehicles and an Initial Investigation of Solutions
,”
J. Vib. Control
,
9
(
7
), pp.
791
804
.
2.
Kulkarni
,
S. S.
, and
Pratap
,
R.
,
2000
, “
Studies on the Dynamics of a Supercavitating Projectile
,”
Appl. Math. Modell.
,
24
(
2
), pp.
113
129
.
3.
Kirschner
,
I. N.
,
Kring
,
D. C.
,
Stokes
,
A. W.
,
Fine
,
N. E.
, and
Uhlman
,
J. S.
,
2002
, “
Control Strategies for Supercavitating Vehicles
,”
J. Vib. Control
,
8
(
2
), pp.
219
242
.
4.
Lin
,
G.
,
Balachandran
,
B.
, and
Abed
,
E. H.
,
2007
, “
Nonlinear Dynamics and Bifurcations of a Supercavitating Vehicle
,”
IEEE J. Oceanic Eng.
,
32
(
4
), pp.
753
761
.
5.
Nguyen
,
V.
,
2011
, “
Dynamics and Control of Non-Smooth Systems With Applications to Supercavitating Vehicles
,”
Ph.D. thesis
, University of Maryland, College Park, MD.
6.
Saranjam
,
B.
,
2013
, “
Experimental and Numerical Investigation of an Unsteady Supercavitating Moving Body
,”
Ocean Eng.
,
59
, pp.
9
14
.
7.
Mao
,
X.
, and
Wang
,
Q.
,
2009
, “
Nonlinear Control Design for a Supercavitating Vehicle
,”
IEEE Trans. Control Syst. Technol.
,
17
(
4
), pp.
816
832
.
8.
Vanek
,
B.
,
Bokor
,
J.
,
Balas
,
G. J.
, and
Arndt
,
R. E.
,
2007
, “
Longitudinal Motion Control of a High-Speed Supercavitation Vehicle
,”
J. Vib. Control
,
13
(
2
), pp.
159
184
.
9.
Balas
,
G. J.
,
Bokor
,
J.
,
Vanek
,
B.
, and
Arndt
,
R. E.
,
2006
, “
Control of High-Speed Underwater Vehicles
,”
Control of Uncertain Systems: Modelling, Approximation, and Design
,
Springer
,
Berlin
, pp.
25
44
.
10.
Lin
,
G.
,
Balachandran
,
B.
, and
Abed
,
E. H.
,
2006
, “
Nonlinear Dynamics and Control of Supercavitating Bodies
,”
AIAA
Paper No. 2006-6445.
11.
Lin
,
G.
,
Balachandran
,
B.
, and
Abed
,
E. H.
,
2008
, “
Dynamics and Control of Supercavitating Vehicles
,”
ASME J. Dyn. Syst. Meas. Control
,
130
(
2
), p.
021003
.
12.
Qiang
,
B.
,
Han
,
Y.
,
Sun
,
Y.
, and
Bai
,
T.
,
2014
, “
Absolute Stability Control of Supercavitating Vehicles Based on Backstepping
,”
IEEE International Conference on Mechatronics and Automation
(
ICMA
), Tianjin, China, Aug. 3–6, pp.
1918
1923
.
13.
Lin
,
G.
,
Balachandran
,
B.
, and
Abed
,
E. H.
,
2010
, “
Absolute Stability of Second-Order Systems With Asymmetric Sector Boundaries
,”
IEEE Trans. Autom. Control
,
55
(
2
), pp.
458
463
.
14.
Mao
,
X.
, and
Wang
,
Q.
,
2006
, “
Nonlinear Robust Control Design for a Supercavitating Vehicle
,”
ASME
Paper No. IMECE2006-14519.
15.
Mao
,
X.
, and
Wang
,
Q.
,
2013
, “
Adaptive Control Design for a Supercavitating Vehicle Model Based on Fin Force Parameter Estimation
,”
J. Vib. Control
,
21
(
6
), pp.
1220
1233
.
16.
Mao
,
X.
, and
Wang
,
Q.
,
2011
, “
Delay-Dependent Control Design for a Time-Delay Supercavitating Vehicle Model
,”
J. Vib. Control
,
17
(
3
), pp.
431
448
.
17.
Hassouneh
,
M. A.
,
Nguyen
,
V.
,
Balachandran
,
B.
, and
Abed
,
E. H.
,
2013
, “
Stability Analysis and Control of Supercavitating Vehicles With Advection Delay
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
2
), p.
021003
.
18.
Mirzaei
,
M.
,
Eghtesad
,
M.
, and
Alishahi
,
M. M.
,
2015
, “
Planing Force Identification in High-Speed Underwater Vehicles
,”
J. Vib. Control
,
22
(
20
), pp.
4176
4191
.
19.
Xinhua
,
Z.
,
Yao
,
S.
,
Zengkun
,
Q.
, and
Minyan
,
H.
,
2016
, “
Catastrophe Characteristics and Control of Pitching Supercavitating Vehicles at Fixed Depths
,”
Ocean Eng.
,
112
, pp.
185
194
.
20.
Kothare
,
M. V.
,
Campo
,
P. J.
,
Morari
,
M.
, and
Nett
,
C. N.
,
1994
, “
A Unified Framework for the Study of Anti-Windup Designs
,”
Automatica
,
30
(
12
), pp.
1869
1883
.
21.
Hu
,
T.
, and
Lin
,
Z.
,
2001
,
Control Systems With Actuator Saturation: Analysis and Design
, Birkhäuser, Boston, MA.
22.
Sanabria
,
D. E.
,
Balas
,
G.
, and
Arndt
,
R.
,
2015
, “
Modeling, Control, and Experimental Validation of a High-Speed Supercavitating Vehicle
,”
IEEE J. Oceanic Eng.
,
40
(
2
), pp.
362
373
.
23.
Kuklinski
,
R.
,
Castano
,
J.
, and
Henoch
,
C.
,
2001
, “
Experimental Study of Ventilated Cavities on Dynamic Test Model
,” 4th International Symposium on Cavitation (
CAV2001
), Pasadena, CA, June 20–23.
24.
Kuklinski
,
R.
,
Fredette
,
A.
,
Henoch
,
C.
, and
Castano
,
J.
,
2006
, “
Experimental Studies in the Control of Cavitating Bodies
,”
AIAA
Paper No. 2006-6443.
25.
Vanek
,
B.
,
Balas
,
G. J.
, and
Arndt
,
R. E.
,
2010
, “
Linear, Parameter-Varying Control of a Supercavitating Vehicle
,”
Control Eng. Practice
,
18
(
9
), pp.
1003
1012
.
26.
Zhao
,
X.-H.
,
Sun
,
Y.
,
Zhao
,
G.-L.
, and
Fan
,
J.-L.
,
2014
, “
μ-Synthesis Robust Controller Design for the Supercavitating Vehicle Based on the BTT Strategy
,”
Ocean Eng.
,
88
, pp.
280
288
.
27.
Mao
,
X.
, and
Wang
,
Q.
,
2011
, “
Robust Adaptive Backstepping Control Design for a Supercavitating Vehicle Model
,”
ASME
Paper No. DSCC2011-5906.
28.
Zhang
,
L.
, and
Qiang
,
B.
,
2015
, “
Stability Analysis and Control Design of a Supercavitating Vehicle Subject to Actuator Saturation
,”
J. Mar. Sci. Technol.
(in press).
29.
Qiang
,
B.
, and
Zhang
,
L.
,
2016
, “
Output Feedback Control Design on Enlarging the Domain of Attraction for a Supercavitating Vehicle Subject to Actuator Saturation
,”
Inst. Meas. Control, Trans.
(in press).
30.
Cao
,
Y.-Y.
,
Zongli
,
L.
, and
Ward
,
D. G.
,
2002
, “
An Antiwindup Approach to Enlarging Domain of Attraction for Linear Systems Subject to Actuator Saturation
,”
IEEE Trans. Autom. Control
,
47
(
1
), pp.
140
145
.
31.
Grimm
,
G.
,
Hatfield
,
J.
,
Postlethwaite
,
I.
,
Teel
,
A. R.
,
Turner
,
M. C.
, and
Zaccarian
,
L.
,
2003
, “
Antiwindup for Stable Linear Systems With Input Saturation: An LMI-Based Synthesis
,”
IEEE Trans. Autom. Control
,
48
(
9
), pp.
1509
1525
.
32.
Hencey
,
B.
, and
Alleyne
,
A.
,
2009
, “
An Anti-Windup Technique for LMI Regions
,”
Automatica
,
45
(
10
), pp.
2344
2349
.
33.
Mulder
,
E. F.
,
Kothare
,
M. V.
, and
Morari
,
M.
,
2001
, “
Multivariable Anti-Windup Controller Synthesis Using Linear Matrix Inequalities
,”
Automatica
,
37
(
9
), pp.
1407
1416
.
34.
Sawada
,
K.
,
Kiyama
,
T.
, and
Iwasaki
,
T.
,
2009
, “
Generalized Sector Synthesis of Output Feedback Control With Anti-Windup Structure
,”
Syst. Control Lett.
,
58
(
6
), pp.
421
428
.
35.
Wu
,
F.
, and
Soto
,
M.
,
2004
, “
Extended Anti-Windup Control Schemes for LTI and LFT Systems With Actuator Saturations
,”
Int. J. Robust Nonlinear Control
,
14
(
15
), pp.
1255
1281
.
36.
Lu
,
L.
, and
Lin
,
Z.
,
2010
, “
A Switching Anti-Windup Design Using Multiple Lyapunov Functions
,”
IEEE Trans. Autom. Control
,
55
(
1
), pp.
142
148
.
37.
Li
,
Y.
, and
Lin
,
Z.
,
2013
, “
Design of Saturation-Based Switching Anti-Windup Gains for the Enlargement of the Domain of Attraction
,”
IEEE Trans. Autom. Control
,
58
(
7
), pp.
1810
1816
.
38.
Logvinovich
,
G. V.
,
1969
,
Hydrodynamics of Free-Boundary Flows
, U.S. Naukova Dumka Publishing House, Kiev, Ukraine (in Russian).
39.
Hassan
,
S.
,
1999
, “
Analysis of Hydrodynamic Planing Forces Associated With Cavity Riding Vehicles
,” Naval Undersea Warfare Center Technical Memorandum, Newport, RI, Memo No. 990085.
40.
Paryshev
,
E. V.
,
2003
, “
Mathematical Modeling of Unsteady Cavity Flows
,”
Fifth International Symposium on Cavitation
(CAV), Osaka, Japan, Nov. 1–4, pp.
1
18
.
41.
Dzielski
,
J. E.
,
2011
, “
Longitudinal Stability of a Supercavitating Vehicle
,”
IEEE J. Oceanic Eng.
,
36
(
4
), pp.
562
570
.
42.
Nguyen
,
V.
, and
Balachandran
,
B.
,
2011
, “
Supercavitating Vehicles With Noncylindrical, Nonsymmetric Cavities: Dynamics and Instabilities
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
4
), p.
041001
.
43.
Boyd
,
S.
,
Ghaoui
,
L. E.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
1994
,
Linear Matrix Inequalities in System and Control Theory
,
SIAM
,
Philadelphia, PA
.
44.
Qiang
,
B.
, and
Zhang
,
L.
,
2016
, “
Robust Dynamic Output Feedback Control for a Supercavitating Vehicle
,” J. Syst.Control. Eng., (in press).
You do not currently have access to this content.