The energy that is needed for operating a self-powered device is provided by the energy excess in the system in the form of kinetic energy, or a combination of regenerative and renewable energy. This paper addresses the energy exchange issues pertaining to regenerative and renewable energy in the development of a self-powered dynamic system. A rigorous framework that explores the supply and demand of energy for self-powered systems is developed, which considers uncertainties and optimal bounds, in the context of optimal uncertainty quantification. Examples of regenerative and solar-powered systems are given, and the analysis of self-powered feedback control for developing a fully self-powered dynamic system is discussed.

References

References
1.
Khoshnoud
,
F.
,
Zhang
,
Y.
,
Shimura
,
R.
,
Shahba
,
A.
,
Jin
,
G.
,
Pissanidis
,
G.
,
Chen
,
Y. K.
, and
De Silva
,
C. W.
,
2015
, “
Energy Regeneration From Suspension Dynamic Modes and Self-Powered Actuation
,”
IEEE/ASME Trans. Mechatron.
,
20
(
5
), pp.
2513
2524
.
2.
De Silva
,
C. W.
,
Khoshnoud
,
F.
,
Li
,
M.
, and
Halgamuge
,
S. K.
, eds.,
2015
, “
Self-Powered and Biologically Inspired Dynamic Systems
,”
Mechatronics: Fundamentals and Applications
,
CRC Press
, Boca Raton, FL, Chap. 12.
3.
Khoshnoud
,
F.
,
Dell
,
D. J.
,
de Silva
,
C. W.
,
Chen
,
Y.
,
Owhadi
,
H.
, and
Calay
,
R. K.
,
2013
, “
Self-Powered Dynamic Systems
,”
European Conference for Aeronautics and Space Sciences
, Munich, Germany, July 1–5, Paper No.
275
.
4.
Khoshnoud
,
F.
,
Lu
,
J.
,
Zhang
,
Y.
,
Folkson
,
R.
, and
De Silva
,
C. W.
,
2014
, “
Suspension Energy Regeneration for Random Excitations and Self-Powered Actuation
,”
IEEE International Conference on Systems
, Man, and Cybernetics (
SMC
), San Diego, CA, Oct. 5–8, pp.
2549
2554
.
5.
Khoshnoud
,
F.
,
McKerns
,
M.
,
De Silva
,
C. W.
,
Esat
,
I. I.
,
Bonser
,
R. H. C.
, and
Owhadi
,
H.
,
2016
, “
Self-Powered and Bio-Inspired Dynamic Systems: Research and Education
,”
ASME
Paper No. IMECE2016-65276.
6.
Khoshnoud
,
F.
, and
De Silva
,
C. W.
,
2015
, “
Mechatronics Issues of Vehicle Control and Self-Powered Systems
,”
Advanced Autonomous Vehicle Design for Severe Environments
,
V. V.
Vantsevich
and
M. V.
Blundell
, eds.,
IOS Press
,
Fairfax, VA
, Chap. 8.
7.
Khoshnoud
,
F.
,
Sundar
,
D. B.
,
Badi
,
N. M.
,
Chen
,
Y. K.
,
Calay
,
R. K.
, and
de Silva
,
C. W.
,
2013
, “
Energy Harvesting From Suspension Systems Using Regenerative Force Actuators
,”
Int. J. Veh. Noise Vib.
,
9
(
3/4
), pp.
294
311
.
8.
Khoshnoud
,
F.
,
Owhadi
,
H.
,
de Silva
,
C. W.
,
Zhu
,
W.
, and
Ventura
,
C. E.
,
2011
, “
Energy Harvesting From Ambient Vibration With a Nanotube Based Oscillator for Remote Vibration Monitoring
,”
23rd Canadian Congress of Applied Mechanics
, Vancouver, BC, Canada, June 5–9, pp. 805–808.
9.
Williams
,
C. B.
, and
Yates
,
R. B.
,
1996
, “
Analysis of a Micro-Electric Generator for Microsystems
,”
Sens. Actuators, A
,
52
(1–3), pp.
8
11
.
10.
James
,
E. P.
,
Tudor
,
M. J.
,
Beeby
,
S. P.
,
Harris
,
N. R.
,
Glynne-Jones
,
P.
,
Ross
,
J. N.
, and
White
,
N. M.
,
2004
, “
An Investigation of Self-Powered Systems for Condition Monitoring Applications
,”
Sens. Actuators, A
,
110
(1–3), pp.
171
176
.
11.
Roundy
,
S.
,
Wright
,
P. K.
, and
Rabaey
,
J.
,
2003
, “
A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes
,”
Comput. Commun.
,
26
(
11
), pp.
1131
1144
.
12.
Stephen
,
N. G.
,
2006
, “
On Energy Harvesting From Ambient Vibration
,”
J. Sound Vib.
,
293
(1–2), pp.
409
425
.
13.
Wang
,
Z. L.
,
2012
, “
Self-Powered Nanosensors and Nanosystems
,”
Adv. Mater.
,
24
(
2
), pp.
280
285
.
14.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
,
Piezoelectric Energy Harvesting
,
Wiley
,
Chichester, UK
.
15.
Khoshnoud
,
F.
, and
De Silva
,
C. W.
,
2012
, “
Recent Advances in MEMS Sensor Technology—Mechanical Applications
,”
IEEE Instrum. Meas.
,
15
(
2
), pp.
14
24
.
16.
Ibrahim
,
S. W.
, and
Ali
,
W. G.
,
2012
, “
A Review on Frequency Tuning Methods for Piezoelectric Energy Harvesting Systems
,”
J. Renewable Sustainable Energy
,
4
(
6
), p.
062703
.
17.
Stanton
,
S. C.
,
McGehee
,
C. C.
, and
Mann
,
B. P.
,
2010
, “
Nonlinear Dynamics for Broadband Energy Harvesting: Investigation of a Bistable Piezoelectric Inertial Generator
,”
Physica D
,
239
(
10
), pp.
640
653
.
18.
Kong
,
N.
, and
Ha
,
D. S.
,
2012
, “
Low-Power Design of a Self-Powered Piezoelectric Energy Harvesting System With Maximum Power Point Tracking
,”
IEEE Trans. Power Electron.
,
27
(
5
), pp.
2298
2308
.
19.
Scruggs
,
J. T.
,
2004
, “
Structural Control Using Regenerative Force Actuation Networks
,”
Ph.D. thesis
, California Institute of Technology, Pasadena, CA.
20.
Scruggs
,
J. T.
, and
R. E.
Skelton
,
2006
, “
Regenerative Tensegrity Structures for Energy Harvesting Applications
,”
45th IEEE Conference on Decision and Control
(
CDC
), San Diego, CA, Dec. 13–15, pp.
2282
2287
.
21.
Nakano
,
K.
,
Suda
,
Y.
, and
Nakadai
,
S.
,
2003
, “
Self-Powered Active Vibration Control Using a Single Electric Actuator
,”
J. Sound Vib.
,
260
(
2
), pp.
213
235
.
22.
Zuo
,
L.
,
Scully
,
B.
,
Shestani
,
J.
, and
Zhou
,
Y.
,
2010
, “
Design and Characterization of an Electromagnetic Energy Harvester for Vehicle Suspensions
,”
Smart Mater. Struct.
,
19
(
4
), p.
045003
.
23.
Zuo
,
L.
, and
Zhang
,
P.
,
2012
, “
Energy Harvesting, Ride Comfort, and Road Handling of Regenerative Vehicle Suspensions
,”
ASME J. Vib. Acoust.
,
135
(1), p.
011002
.
24.
Karnopp
,
D.
,
1992
, “
Power Requirements for Vehicle Suspension Systems
,”
Veh. Syst. Dyn.
,
21
(
1
), pp.
65
71
.
25.
Goldner
,
R.
,
Zerigian
,
P.
, and
Hull
,
J.
,
2001
, “
A Preliminary Study of Energy Recovery in Vehicles by Using Regenerative Magnetic Shock Absorbers
,”
SAE
Paper No. 2001-01-2071.
26.
Kawamoto
,
Y.
,
Suda
,
Y.
,
Inoue
,
H.
, and
Kondo
,
T.
,
2007
, “
Modeling of Electromagnetic Damper for Automobile Suspension
,”
J. Syst. Des. Dyn.
,
1
(3), pp.
524
535
.
27.
Faris
,
W. F.
,
Ihsan
,
S. I.
, and
Ahmadian
,
M.
,
2009
, “
A Comparative Ride Performance and Dynamic Analysis of Passive and Semi-Active Suspension Systems Based on Different Vehicle Models
,”
Int. J. Veh. Noise Vib.
,
5
(
1/2
), pp.
116
140
.
28.
Shen
,
W.-A.
,
Zhu
,
S.
, and
Xu
,
Y.-L.
,
2012
, “
An Experimental Study on Self-Powered Vibration Control and Monitoring System Using Electromagnetic TMD and Wireless Sensors
,”
Sens. Actuators, A
,
180
, pp.
166
176
.
29.
Dumas
,
A.
,
Madonia
,
M.
,
Giuliani
,
I.
, and
Trancossi
,
M.
,
2011
, “
Multibody Advanced Airship for Transport
,”
SAE
Paper No. 2011-01-2786.
30.
CORDIS, 2011, “
Multibody Advanced Airship for Transport
,” European Union Publications Office, Luxembourg, UK, accessed Apr. 8, 2017, http://cordis.europa.eu/project/rcn/99650_en.html
31.
Khoshnoud
,
F.
,
Chen
,
Y. K.
, and
Calay
,
R. K.
,
2013
, “
On Power and Control Systems of Multibody Advanced Airship for Transport
,”
Int. J. Modell., Identif. Control
,
18
(
4
), pp.
313
322
.
32.
Lamb
,
R.
,
Shrestha
,
A.
,
Wasely
,
K.
,
Zand
,
Z.
,
Kongolo
,
E.
, and
Patel
,
D.
,
2015
, “
Brunel Solar Powered Airship
,”
Master's thesis, Brunel University, London.
33.
Khoshnoud, F., and De Silva, C. W., 2017, “
Self-Powered Solar Aerial Vehicles: Towards Infinite Endurance UAVs
,” (to be published).
34.
Wang
,
H.
,
Luo
,
T.
,
Fan
,
Y.
,
Lu
,
Z.
,
Song
,
H.
, and
Blain Christen
,
J.
,
2015
, “
A Self-Powered Single-Axis Maximum Power Direction Tracking System With an On-Chip Sensor
,”
Sol. Energy
,
112
, pp.
100
107
.
35.
Peng
,
X.
,
Li
,
Q.
, and
Wang
,
K.
,
2015
, “
Dynamic Compensation of Vanadium Self Powered Neutron Detectors Based on Luenberger Form Filter
,”
Prog. Nucl. Energy
,
78
, pp.
190
195
.
36.
Liang
,
Q.
,
Zhanga
,
Z.
,
Yan
,
X.
,
Gu
,
Y.
,
Zhao
,
Y.
,
Zhang
,
G.
,
Lu
,
S.
,
Liao
,
Q.
, and
Zhang
,
Y.
,
2015
, “
Functional Triboelectric Generator as Self-Powered Vibration Sensor With Contact Mode and Non-Contact Mode
,”
Nano Energy
,
14
, pp.
209
216
.
37.
Wang
,
S.
,
Lin
,
L.
, and
Wang
,
Z. L.
,
2015
, “
Triboelectric Nanogenerators as Self-Powered Active Sensors
,”
Nano Energy
,
11
, pp.
436
462
.
38.
Ewing
,
T.
,
Babauta
,
J. T.
,
Atci
,
E.
,
Tang
,
N.
,
Orellana
,
J.
,
Heo
,
D.
, and
Beyenal
,
H.
,
2014
, “
Self-Powered Wastewater Treatment for the Enhanced Operation of a Facultative Lagoon
,”
J. Power Sources
,
269
, pp.
284
292
.
39.
Liu
,
W.
,
Formosa
,
F.
,
Badel
,
A.
,
Wu
,
Y.
, and
Agbossou
,
A.
,
2014
, “
Self-Powered Nonlinear Harvesting Circuit With a Mechanical Switch Structure for a Bistable Generator With Stoppers
,”
Sens. Actuators, A
,
216
, pp.
106
115
.
40.
Hanashi
,
T.
,
Yamazaki
,
T.
,
Tanaka
,
H.
,
Ikebukuro
,
K.
,
Tsugawa
,
W.
, and
Sodea
,
K.
,
2014
, “
The Development of an Autonomous Self-Powered Bio-Sensing Actuator
,”
Sens. Actuators, B
,
196
, pp.
429
433
.
41.
Pinyou
,
P.
,
Conzuelo
,
F.
,
Sliozberg
,
K.
,
Vivekananthan
,
J.
,
Contin
,
A.
,
Pöller
,
S.
,
Plumeré
,
N.
, and
Schuhmann
,
W.
,
2015
, “
Coupling of an Enzymatic Biofuel Cell to an Electrochemical Cell for Self-Powered Glucose Sensing With Optical Readout
,”
Bioelectrochemistry
,
106
(
Pt. A
), pp.
22
27
.
42.
Li
,
Y.
,
Cheng
,
G.
,
Lin
,
Z.-H.
,
Yang
,
J.
,
Lin
,
L.
, and
Wang
,
Z. L.
,
2015
, “
Single-Electrode-Based Rotationary Triboelectric Nanogenerator and Its Applications as Self-Powered Contact Area and Eccentric Angle Sensors
,”
Nano Energy
,
11
, pp.
323
332
.
43.
Zhu
,
H. R.
,
Tang
,
W.
,
Gao
,
C. Z.
,
Han
,
Y.
,
Li
,
T.
,
Cao
,
X.
, and
Wang
,
Z. L.
,
2015
, “
Self-Powered Metal Surface Anti-Corrosion Protection Using Energy Harvested From Rain Drops and Wind
,”
Nano Energy
,
14
, pp.
193
200
.
44.
Chen
,
S.
,
Gao
,
C.
,
Tang
,
W.
,
Zhu
,
H.
,
Han
,
Y.
,
Jiang
,
Q.
,
Li
,
T.
,
Cao
,
X.
, and
Wang
,
Z. L.
,
2015
, “
Self-Powered Cleaning of Air Pollution by Wind Driven Triboelectric Nanogenerator
,”
Nano Energy
,
14
, pp.
217
225
.
45.
Bai
,
P.
,
Zhu
,
G.
,
Jing
,
Q.
,
Wu
,
Y.
,
Yang
,
J.
,
Chen
,
J.
,
Ma
,
J.
,
Zhang
,
G.
, and
Wang
,
Z. L.
,
2015
, “
Transparent and Flexible Barcode Based on Sliding Electrification for Self-Powered Identification Systems
,”
Nano Energy
,
12
, pp.
278
286
.
46.
Meng
,
X. S.
,
Li
,
H. Y.
,
Zhu
,
G.
, and
Wang
,
Z. L.
,
2015
, “
Fully Enclosed Bearing-Structured Self-Powered Rotation Sensor Based on Electrification at Rolling Interfaces for Multi-Tasking Motion Measurement
,”
Nano Energy
,
12
, pp.
606
611
.
47.
Gai
,
P.-P.
,
Ji
,
Y.-S.
,
Wang
,
W.-J.
,
Song
,
R.-B.
,
Zhu
,
C.
,
Chen
,
Y.
,
Zhang
,
J.-R.
, and
Zhu
,
J.-J.
,
2016
, “
Ultrasensitive Self-Powered Cytosensor
,”
Nano Energy
,
19
, pp.
541
549
.
48.
Jiang
,
Q.
,
Han
,
Y.
,
Tang
,
W.
,
Zhu
,
H.
,
Gao
,
C.
,
Chen
,
S.
,
Willander
,
M.
,
Cao
,
X.
, and
Wang
,
Z. L.
,
2015
, “
Self-Powered Seawater Desalination and Electrolysis Using Flowing Kinetic Energy
,”
Nano Energy
,
15
, pp.
266
274
.
49.
Luo
,
J.
,
Fan
,
F. R.
,
Zhou
,
T.
,
Tang
,
W.
,
Xue
,
F.
, and
Wang
,
Z. L.
,
2015
, “
Ultrasensitive Self-Powered Pressure Sensing System
,”
Extreme Mech. Lett.
,
2
, pp.
28
36
.
50.
Owhadi
,
H.
,
Scovel
,
C.
,
Sullivan
,
T.
,
McKerns
,
M.
, and
Ortiz
,
M.
,
2013
, “
Optimal Uncertainty Quantification
,”
SIAM Rev.
,
55
(
2
), pp.
271
345
.
51.
Owhadi
,
H.
, and
Scovel
,
C.
,
2016
,
Handbook of Uncertainty Quantification
,
Springer International Publishing
,
Basel, Switzerland
, pp.
1
35
.
52.
Wong
,
J. Y.
,
2001
,
Theory of Ground Vehicles
,
3rd ed.
,
Wiley
,
New York
.
You do not currently have access to this content.