This paper investigates the problem of robust stabilization for a class of discrete-time Takagi–Sugeno (TS) fuzzy systems via input random delays in control input. The main objective of this paper is to design a state feedback H controller. Linear matrix inequality (LMI) approach together with the construction of proper Lyapunov–Krasovskii functional is employed for obtaining delay dependent sufficient conditions for the existence of robust H controller. In particular, the effect of both variation range and distribution probability of the time delay is taken into account in the control input. The key feature of the proposed results in this paper is that the time‐varying delay in the control input not only dependent on the bound but also the distribution probability of the time delay. The obtained results are formulated in terms of LMIs which can be easily solved by using the standard optimization algorithms. Finally, a numerical example with simulation result is provided to illustrate the effectiveness of the obtained control law and less conservativeness of the proposed result.

References

References
1.
Takagi
,
T.
, and
Sugeno
,
M.
,
1985
, “
Fuzzy Identification of Systems and Its Applications to Modeling and Control
,”
IEEE Trans. Syst., Man, Cybern.
,
15
(
1
), pp.
116
132
.
2.
Chang
,
X. H.
, and
Yang
,
G. H.
,
2011
, “
A Descriptor Representation Approach to Observer-Based H∞ Control Synthesis for Discrete-Time Fuzzy Systems
,”
Fuzzy Sets Syst.
,
185
(
2
), pp.
38
51
.
3.
Kau
,
S. W.
,
Lee
,
H. J.
,
Yang
,
C. M.
,
Lee
,
C. H.
,
Hong
,
L.
, and
Fang
,
C. H.
,
2007
, “
Robust H∞ Fuzzy Static Output Feedback Control of T-S Fuzzy Systems With Parametric Uncertainties
,”
Fuzzy Sets Syst.
,
158
(
2
), pp.
135
146
.
4.
Zhao
,
Y.
,
Gao
,
H.
,
Lam
,
J.
, and
Du
,
B.
,
2009
, “
Stability and Stabilization of Delayed T-S Fuzzy Systems: A Delay Partitioning Approach
,”
IEEE Trans. Fuzzy Syst.
,
17
(
4
), pp.
750
762
.
5.
Feng
,
Z.
, and
Lam
,
J.
,
2013
, “
Reliable Dissipative Control for Singular Markovian Systems
,”
Asian J. Control
,
15
(
3
), pp.
901
910
.
6.
Liang
,
J.
,
Wang
,
Z.
, and
Liu
,
X.
,
2012
, “
Distributed State Estimation for Uncertain Markov-Type Sensor Networks With Mode-Dependent Distributed Delays
,”
Int. J. Robust Nonlinear Control
,
22
(
3
), pp.
331
346
.
7.
Sakthivel
,
R.
,
Mathiyalagan
,
K.
, and
Anthoni
,
S. M.
,
2012
, “
Robust H∞ Control for Uncertain Discrete-Time Stochastic Neural Networks With Time-Varying Delays
,”
IET Control Theory Appl.
,
6
(
9
), pp.
1220
1228
.
8.
Shen
,
B.
,
Wang
,
Z.
, and
Liu
,
X.
,
2012
, “
Sampled-Data Synchronization Control of Complex Dynamical Networks With Stochastic Sampling
,”
IEEE Trans. Autom. Control
,
57
(
10
), pp.
2644
2650
.
9.
Gao
,
H.
,
Liu
,
X.
, and
Lam
,
J.
,
2009
, “
Stability Analysis and Stabilization for Discrete-Time Fuzzy Systems With Time-Varying Delay
,”
IEEE Trans. Syst., Man, Cybern., B: Cybern.
,
39
(
2
), pp.
306
317
.
10.
Su
,
X.
,
Shi
,
P.
,
Wu
,
L.
, and
Song
,
Y. D.
,
2012
, “
A Novel Approach to Filter Design for T-S Fuzzy Discrete-Time Systems With Time-Varying Delay
,”
IEEE Trans. Fuzzy Syst.
,
20
(
6
), pp.
1114
1129
.
11.
Wu
,
Z. G.
,
Shi
,
P.
,
Su
,
H.
, and
Chu
,
J.
,
2012
, “
Reliable H∞ Control for Discrete-Time Fuzzy Systems With Infinite-Distributed Delay
,”
IEEE Trans. Fuzzy Syst.
,
20
(
1
), pp.
22
31
.
12.
Yang
,
H.
,
Shi
,
P.
,
Zhang
,
J.
, and
Qiu
,
J.
,
2012
, “
Robust H∞ Control for a Class of Discrete Time Fuzzy Systems via Delta Operator Approach
,”
Inf. Sci.
,
184
(
1
), pp.
230
245
.
13.
Thanh
,
N. T.
, and
Phat
, V
. N.
,
2012
, “
Decentralized H∞ Control for Large-Scale Interconnected Nonlinear Time-Delay Systems via LMI Approach
,”
J. Process Control
,
22
(
7
), pp.
1325
1339
.
14.
Sakthivel
,
R.
,
Mathiyalagan
,
K.
, and
Anthoni
,
S. M.
,
2011
, “
Design of a Passification Controller for Uncertain Fuzzy Hopfield Neural Networks With Time-Varying Delays
,”
Phys. Scr.
,
84
(
4
), p.
045024
.
15.
Sua
,
Y. K.
,
Chen
,
B.
,
Zhou
,
Q.
, and
Lin
,
C.
,
2012
, “
Fuzzy Robust H∞ Filter Design for Nonlinear Discrete-Time Systems With Interval Time Delays
,”
Int. J. Syst. Sci.
,
43
(
8
), pp.
1568
1579
.
16.
Vadivel
,
P.
,
Sakthivel
,
R.
,
Mathiyalagan
,
K.
, and
Thangaraj
,
P.
,
2012
, “
Robust Stabilization of Nonlinear Uncertain Takagi-Sugeno Fuzzy Systems by H∞ Control
,”
IET Control Theory Appl.
,
6
(
16
), p.
2556
.
17.
Xu
,
S.
, and
Lam
,
J.
,
2005
, “
Robust H∞ Control for Uncertain Discrete Time Delay Fuzzy Systems via Output Feedback Controllers
,”
IEEE Trans. Fuzzy Syst.
,
13
(
1
), pp.
82
93
.
18.
Bao
,
H.
, and
Cao
,
J.
,
2011
, “
Delay-Distribution-Dependent State Estimation for Discrete-Time Stochastic Neural Networks With Random Delay
,”
Neural Networks
,
24
(
1
), pp.
19
28
.
19.
Lee
,
T. H.
,
Park
,
J. H.
,
Kwon
,
O. M.
, and
Lee
,
S. M.
,
2013
, “
Stochastic Sampled-Data Control for State Estimation of Time-Varying Delayed Neural Networks
,”
Neural Networks
,
46
, pp.
99
108
.
20.
Lee
,
T. H.
,
Park
,
J. H.
,
Lee
,
S. M.
, and
Kwon
,
O. M.
,
2013
, “
Robust Synchronization of Chaotic Systems With Randomly Occurring Uncertainties via Stochastic Sampled-Data Control
,”
Int. J. Control
,
86
(
1
), pp.
107
119
.
21.
Wu
,
Z. G.
,
Park
,
J. H.
,
Su
,
H.
,
Song
,
B.
, and
Chu
,
J.
,
2012
, “
Exponential Synchronization for Complex Dynamical Networks With Sampled-Data
,”
J. Franklin Inst.
,
349
(
9
), pp.
2735
2749
.
22.
Ray
,
A.
,
1994
, “
Output Feedback Control Under Randomly Varying Distributed Delays
,”
Control Dyn.
,
17
(
4
), pp.
701
711
.
23.
Zhang
,
Y.
,
Xu
,
S.
, and
Zeng
,
Z.
,
2009
, “
Novel Robust Stability Criteria of Discrete-Time Stochastic Recurrent Neural Networks With Time Delay
,”
Neurocomputing
,
72
(
13–15
), pp.
3343
3351
.
24.
Zhang
,
J.
,
Xia
,
Y.
, and
Mahmoud
,
M. S.
,
2009
, “
Robust Generalised H2 and H∞ Static Output Feedback Control for Uncertain Discrete-Time Fuzzy Systems
,”
IET Control Theory Appl.
,
3
(
7
), pp. 865–876.
25.
Lo
,
J. C.
, and
Lin
,
M. L.
,
2003
, “
Robust H∞ Nonlinear Control via Fuzzy Static Output Feedback
,”
IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
,
50
(
11
), pp.
1494
1502
.
You do not currently have access to this content.