The hydraulic buck converter (HBC) is a novel high-bandwidth and energy-efficient device which can adjust or control flow and pressure by a means that does not rely on throttling the flow and dissipation of power. However, the nature of a HBC can cause severe fluid-borne noise (FBN), which is the unsteady pressure or flow in the fluid-filled hydraulic circuit. This is due to the operation nature of a high-speed switching valve of the device. The FBN creates fluctuating forces on the pipes which lead to system structure-borne noise that develops air-borne noise reaching to 85 dB. Thus, there is a need for an effective method that does not impair the system performance and efficiency to reduce the FBN. This paper describes the first investigation of an active controller for FBN cancellation in a HBC based on in-series and by-pass structures. The dynamics and the noise problem of the HBC are investigated using the analytical models. A piezoelectrically actuated hydraulic valve with a fast response and high force is applied as the adaptive FBN attenuator. The performance and robustness of the designed noise controller were studied with different operating conditions of a HBC. Simulated and experimental results show that excellent noise cancellation (30 dB) was achieved. The proposed active attenuator is a very promising solution for FBN attenuation in modern digital hydraulic systems which promise high energy efficiency but suffer severe noise or vibration problems in practice.

References

References
1.
Henderson
,
R.
,
1981
, “
Quieter Fluid Power Handbook: Silencing Fluid-Borne Noise
,”
BHRA Fluid Engineering
, Reading, UK, pp.
33
44
.
2.
Johnston
,
D. N.
,
2009
, “
A Switched Inertance Device for Efficient Control of Pressure and Flow
,”
ASME
Paper No. DSCC2009-2535.
3.
Brown
,
F. T.
,
1987
, “
Switched Reactance Hydraulics: A New Way to Control Fluid Power
,”
National Conference on Fluid Power
, Chicago, IL, Mar. 2–5, pp.
25
34
.
4.
Brown
,
F. T.
,
1988
, “
A Hydraulic Rotary Switched Inertance Servo-Transformer
,”
ASME J. Dyn. Syst. Meas. Control
,
110
(
2
), pp.
144
150
.
5.
Wang
,
L.
,
2008
, “
Active Control of Fluid-Borne Noise
,”
Ph.D. thesis
, University of Bath, Bath, UK.
6.
Kuo
,
S.
, and
Morgan
,
D.
,
1995
,
Active Noise Control Systems: Algorithms and DSP Implementations
,
Wiley
,
New York
.
7.
Hall
,
S. R.
, and
Wereley
,
N. M.
,
1993
, “
Performance of Higher Harmonic Control Algorithms for Helicopter Vibration Reduction
,”
J. Guid. Control Dyn.
,
16
(
4
), pp.
793
797
.
8.
Sacks
,
A.
,
Bodson
,
M.
, and
Khosla
,
P.
,
1996
, “
Experimental Results of Adaptive Periodic Disturbance Cancellation in a High Performance Magnetic Disk Drive
,”
ASME J. Dyn. Syst. Meas. Control
,
118
(
3
), pp.
416
424
.
9.
Johansson
,
S.
,
Nordebo
,
S.
, and
Claesson
,
I.
,
2002
, “
Convergence Analysis of a Twin-Reference Complex Least-Mean-Squares Algorithm
,”
IEEE Trans. Speech Audio Process.
,
10
(
4
), pp.
213
221
.
10.
Chakraborty
,
M.
, and
Sakai
,
H.
,
2005
, “
Convergence Analysis of a Complex LMS Algorithm With Tonal Reference Signals
,”
IEEE Trans. Speech Audio Process.
,
13
(
2
), pp.
286
292
.
11.
Bodson
,
M.
, and
Douglas
,
S. C.
,
1997
, “
Adaptive Algorithms for the Rejection of Sinusoidal Disturbances With Unknown Frequency
,”
Automatica
,
33
(
12
), pp.
2213
2221
.
12.
Sastry
,
S.
, and
Bodson
,
M.
,
2011
,
Adaptive Control: Stability, Convergence and Robustness
, Dover Publications, Mineola, NY.
13.
Pan
,
M.
,
2017
, “
Stability Analysis for an Active Fluid-Borne Noise Attenuator in a Hydraulic Buck Converter
,”
ASME J. Dyn. Syst. Meas. Control
, (in press).
14.
Klees
,
G.
,
1967
, “
Attenuating Device
,”
U.S. Patent No. 3323305
.
15.
Kojima
,
E.
,
Shinada
,
M.
, and
Yamaoka
,
T.
,
1993
, “
Development of an Active Attenuator for Pressure Pulsation in Liquid Piping Systems (Trial Construction of the System and Fundamental Experiments on Attenuation Characteristics)
,”
JSME Int. J., Ser. B
,
36
(
2
), pp.
230
237
.
16.
Johnston
,
D. N.
, and
Pan
,
M.
,
2010
, “
Use of Pipeline Wave Propagation Model for Measuring Unsteady Flowrate
,”
Fluid Power and Motion Control
, Bath, UK, Sept. 15–17, Harness Publicity, Ltd., pp.
307
320
.
17.
Johnston
,
D. N.
,
Pan
,
M.
,
Kudzma
,
S.
, and
Wang
,
P.
,
2014
, “
Use of Pipeline Wave Propagation Model for Measuring Unsteady Flow Rate
,”
ASME J. Fluids Eng.
,
136
(
3
), p.
031203
.
18.
Maillard
,
J.
,
Lago
,
T.
, and
Fuller
,
C.
,
1999
, “
Fluid Wave Actuator for the Active Control of Hydraulic Pulsations in Piping Systems
,”
International Modal Analysis Conference
(
IMAC
), Kissimmee, FL, Feb. 8–11, pp.
1806
1812
.
19.
Wang
,
L.
, and
Johnston
,
D. N.
,
2008
, “
Adaptive Attenuation of Narrow Band Fluid Borne Noise in a Simple Hydraulic System
,”
Bath/ASME Symposium on Fluid Power and Motion Control
, University of Bath, Bath, UK, Sept. 10, pp.
357
368
.
20.
Pan
,
M.
,
Johnston
,
D. N.
, and
Hillis
,
A. J.
,
2012
, “
Active Control of Pressure Pulsation in a Switched Inertance Hydraulic System Using a Rectangular-Wave Reference Signal
,”
Bath/ASME Symposium on Fluid Power and Motion Control
, Bath, UK, Sept. 12–14, pp.
165
177
.
21.
Pan
,
M.
,
Johnston
,
D. N.
, and
Hillis
,
A. J.
,
2013
, “
Active Control of Pressure Pulsation in a Switched Inertance Hydraulic System
,”
Proc. Inst. Mech. Eng., Part I
,
227
(
7
), pp.
610
620
.
22.
Glover
,
J. R.
, Jr.
,
1977
, “
Adaptive Noise Cancelling Applied to Sinusoidal Interferences
,”
IEEE Trans. Acoust. Speech Signal Process.
,
25
(
6
), pp.
484
491
.
23.
Pan
,
M.
,
Johnston
,
D. N.
, and
Hillis
,
A. J.
,
2014
, “
Active Control of Fluid-Bome Noise in Hydraulic Systems Using In-Series and By-Pass Structures
,” 10th UKACC
International Conference on Control
(
CONTROL
), Loughborough, UK, July 9–11, pp.
355
360
.
24.
Pan
,
M.
,
Johnston
,
D. N.
,
Plummer
,
A.
,
Kudzma
,
S.
, and
Hillis
,
A.
,
2014
, “
Theoretical and Experimental Studies of a Switched Inertance Hydraulic System Including Switching Transition Dynamics, Non-Linearity and Leakage
,”
Proc. Inst. Mech. Eng., Part I
,
228
(
10
), pp.
802
815
.
25.
Pan
,
M.
,
Johnston
,
D. N.
,
Plummer
,
A.
,
Kudzma
,
S.
, and
Hillis
,
A.
,
2014
, “
Theoretical and Experimental Studies of a Switched Inertance Hydraulic System
,”
Proc. Inst. Mech. Eng., Part I
,
228
(
1
), pp.
12
25
.
26.
Widrow
,
B.
, and
Hoff
,
M.
,
1960
, “
Adaptive Switching Circuits
,”
IRE WESCON Conv. Rec.
,
4
(
1
), pp.
96
104
.
27.
Haykin
,
S.
,
1996
,
Adaptive Filter Theory
,
Prentice Hall
,
Englewood Cliffs, NJ
.
28.
Morgan
,
D.
,
1980
, “
An Analysis of Multiple Correlation Cancellation Loops With a Filter in the Auxiliary Path
,”
IEEE Trans. Acoust. Speech Signal Process.
,
28
(
4
), pp.
454
467
.
29.
Kuo
,
S.
, and
Morgan
,
D.
,
1995
,
Active Noise Control Systems: Algorithms and DSP Implementations
,
Wiley
,
New York
.
30.
Branson
,
D. T.
,
Johnston
,
D. N.
,
Tilley
,
D. G.
,
Bowen
,
C. R.
, and
Keogh
,
P. S.
,
2010
, “
Piezoelectric Actuation in a High Bandwidth Valve
,”
Ferroelectrics
,
408
(
1
), pp.
32
40
.
31.
Hoerbiger
,
A.
,
1938
, “
Annular Automatic Valve
,”
U.S. Patent No. 2127688
.
32.
Kehler
,
K.
,
1940
, “
Automatic Annular Valve
,”
U.S. Patent No. 2186489
.
33.
Winkler
,
B.
, and
Scheidl
,
R.
,
2007
, “
Development of a Fast Seat Type Switching Valve for Big Flow Rates
,”
10th Scandinavian International Conference on Fluid Power (SICFP’07)
, Tampere, Finland, May 21–23, pp.
137
146
.
34.
Branson
,
D. T.
,
Wang
,
F. C.
,
Johnston
,
D. N.
,
Tilley
,
D. G.
,
Bowen
,
C. R.
, and
Keogh
,
P. S.
,
2011
, “
Piezoelectrically Actuated Hydraulic Valve Design for High Bandwidth and Flow Performance
,”
Proc. Inst. Mech. Eng, Part I
,
225
(3), pp.
345
358
.
35.
Pan
,
M.
,
Johnston
,
N.
, and
Plummer
,
A.
,
2016
, “
Hybrid Fluid-Borne Noise Control in Fluid-Filled Pipelines
,”
J. Phys.: Conf. Ser.
,
744
(
1
), p.
012016
.
36.
Krus
,
P.
,
Weddfelt
,
K.
, and
Palmberg
,
J. O.
,
1994
, “
Fast Pipeline Models for Simulation of Hydraulic Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
116
(
1
), pp.
132
136
.
37.
Johnston
,
N.
,
Pan
,
M.
, and
Kudzma
,
S.
,
2014
, “
An Enhanced Transmission Line Method for Modelling Laminar Flow of Liquid in Pipelines
,”
Proc. Inst. Mech. Eng., Part I
,
228
(
4
), pp.
193
206
.
38.
Johnston
,
D. N.
,
2012
, “
The Transmission Line Method for Modelling Laminar Flow of Liquid in Pipelines
,”
Proc. Inst. Mech. Eng., Part I
,
226
(
5
), pp.
586
597
.
You do not currently have access to this content.