The trajectory tracking in the flexible-joint manipulator (FJM) system becomes complicated since the flexibility of the joint of the FJM superimposes vibrations and nonminimum phase characteristics. In this paper, a distributed higher-order differential feedback controller (DHODFC) using the link and joint position measurement was developed to reduce joint vibration in step input response and to improve tracking behavior in reference trajectory tracking control. In contrast to the classical higher-order differential (HOD), the dynamics of the joint and link are considered separately in DHODFC. In order to validate the performance of the DHODFC, step input, trajectory tracking, and disturbance rejection experiments are conducted. In order to illustrate the differences between classical HOD and DHODFC, the performance of these controllers is compared based on tracking errors and energy of control signal in the tracking experiments and fundamental dynamic characteristics in the step response experiments. DHODFC produces better tracking errors with almost same control effort in the reference tracking experiments and a faster settling time, less or no overshoot, and higher robustness in the step input experiments. Dynamic behavior of DHODFC is examined in continuous and discontinues inputs. The experimental results showed that the DHODFC is successful in the elimination of the nonminimum phase dynamics, reducing overshoots in the tracking of such discontinuous input trajectories as step and square waveforms and the rapid damping of joint vibrations.

References

References
1.
Dwivedy
,
S. K.
, and
Eberhard
,
P.
,
2006
, “
Dynamic Analysis of Flexible Manipulators: A Literature Review
,”
Mech. Mach. Theory
,
41
(
7
), pp.
749
777
.
2.
Albu-Schäffer
,
A.
, and
Hirzinger
,
G.
,
2000
, “
State Feedback Controller for Flexible Joint Robots: A Globally Stable Approach Implemented on DLR’s Light-Weight Robots
,”
IROS
, Oct. 31–Nov. 5, pp.
1087
1093
.
3.
Chien
,
M. C.
, and
Huang
,
A. C.
,
2007
, “
Adaptive Control for Flexible-Joint Electrically Driven Robot With Time-Varying Uncertainties
,”
IEEE Trans. Ind. Electron.
,
54
(
2
), pp.
1032
1038
.
4.
Kim
,
D. H.
, and
Oh
,
W. H.
,
2006
, “
Robust Control Design for Flexible Joint Manipulators: Theory and Experimental Verification
,”
Int. J. Control Autom., Syst.
,
4
(
4
), pp.
495
505
.
5.
Moberg
,
S.
,
Wernholt
,
E.
,
Hanssen
,
S.
, and
Brogårdh
,
T.
,
2014
, “
Modeling and Parameter Estimation of Robot Manipulators Using Extended Flexible Joint Models
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
3
), p.
031005
.
6.
Sira-Ramirez
,
H.
,
Ahmad
,
S.
, and
Zribi
,
M.
,
1992
, “
Dynamic Feedback Control of Robotic Manipulators With Joint Flexibility
,”
IEEE Trans. Syst. Man Cybern.
,
22
(
44
), pp.
736
747
.
7.
Yavuz
,
H.
,
Mıstıkoglu
,
S.
, and
Kapucu
,
S.
,
2011
, “
Hybrid Input Shaping to Suppress Residual Vibration of Flexible Systems
,”
J. Vib. Control
,
18
(
1
), pp.
132
140
.
8.
Talole
,
S. E.
,
Kolhe
,
J. P.
, and
Phadke
,
S. B.
,
2010
, “
Extended-State-Observer-Based Control of Flexible-Joint System With Experimental Validation
,”
IEEE Trans. Ind. Electron.
,
57
(
4
), pp.
1411
1419
.
9.
Yim
,
W.
,
2001
, “
Adaptive Control of a Flexible Joint Manipulator
,” IEEE
International Conference on Robotics and Automation
(
ICRA
), Seoul, South Korea, May 21–26, pp.
3441
3446
.
10.
Zhan
,
Z.
, and
Hu
,
C.
,
2012
, “
Predictive Function Control of the Single-Link Manipulator With Flexible Joint
,”
Applications of Nonlinear Control
,
M.
Altınay
, ed.,
InTech
, Rijeka,
Croatia
, pp.
129
146
.
11.
Akyuz
, I
. H.
,
Bingul
,
Z.
, and
Kizir
,
S.
,
2012
, “
Cascade Fuzzy Logic Control of a Single-Link Flexible-Joint Manipulator
,”
Turk. J. Electr. Eng. Comput. Sci.
,
20
(
5
), pp.
713
725
.
12.
Chatlatanagulchai
,
W.
, and
Meckl
,
P. H.
,
2009
, “
Model-Independent Control of a Flexible-Joint Robot Manipulator
,”
ASME J. Dyn. Syst. Meas. Control
,
131
(
4
), p. 041003.
13.
Jang
,
J. R.
,
Sun
,
C. T.
, and
Mizutani
,
E.
,
1997
,
Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence
,
Prentice Hall
, Upper Saddle River, NJ.
14.
Lee
,
J. X.
, and
Vukovich
,
G.
,
1998
, “
Fuzzy Logic Control of Flexible Link Manipulators-Controller Design and Experimental Demonstrations
,” IEEE
International Conference on Systems, Man and Cybernetic
(
ICSMC
), San Diego, CA, Oct. 11–14, Vol. 2, pp. 2002–2007.
15.
Maouche
,
A. R.
, and
Attari
,
M.
,
2008
, “
Adaptive Neural Control of a Rotating Flexible Manipulator
,” IEEE
International Symposium on Power Electronics, Electrical Drives, Automation and Motion
(
SPEEDAM
), Ischia, Italy, June 11–13, pp.
517
522
.
16.
Siddique
,
M. N. H.
, and
Tokhi
,
M. O.
,
2002
, “
GA-Based Neuro-Fuzzy Controller for Flexible-Link Manipulator
,” International Conference on Control Applications (
CCA
), Glasgow, UK, Sept. 18–20, pp. 471–476.
17.
Subudhi
,
B.
, and
Morris
,
A. S.
,
2003
, “
Fuzzy and Neuro-Fuzzy Approaches to Control a Flexible Single-Link Manipulator
,”
Proc. Inst. Mech. Eng. Part I
,
217
(5), pp.
387
399
.
18.
Agee
,
J. T.
,
Kizir
,
S.
, and
Bingul
,
Z.
,
2015
, “
Intelligent Proportional-Integral (IPI) Control of a Single Link Flexible Joint Manipulator
,”
J. Vib. Control
,
21
(
11
), pp.
2273
2288
.
19.
Fliess
,
M.
, and
Join
,
C.
,
2008
, “
Intelligent PID Controllers
,”
16th Mediterranean Conference on Control and Automation Congress Centre
, Ajaccio, France, June 25–27, pp. 326–331.
20.
Fliess
,
M.
, and
Join
,
C.
,
2013
, “
Model-Free Control
,”
Int. J. Control
,
86
(
12
), pp.
2228
2252
.
21.
Agee
,
J. T.
,
Bingul
,
Z.
, and
Kizir
,
S.
,
2015
, “
Higher-Order Differential Feedback Control of a Flexible-Joint Manipulator
,”
J. Vib. Control
,
21
(
10
), pp.
1976
1986
.
22.
Kandroodi
,
M. R.
,
Mansouri
,
M.
,
Shoorehdeli
,
M. A.
, and
Teshnehlab
,
M.
,
2012
, “
Control of Flexible Joint Manipulator Via Reduced Rule-Based Fuzzy Control With Experimental Validation
,”
ISRN Artif. Intell.
,
2012
, pp.
1
8
.
23.
Qi
,
G.
,
Chen
,
Z.
, and
Yuan
,
Z. Z.
,
2005
, “
Model Free Control of Affine Chaotic Systems
,”
Phys. Lett. A
,
344
(
2–4
), pp.
189
202
.
24.
Qi
,
G.
,
Chen
,
Z.
, and
Yuan
,
Z.
,
2008
, “
Adaptive High Order Differential Feedback Control for Affine Nonlinear Systems
,”
Chaos Solitons Fractals
,
37
(
1
), pp.
308
315
.
25.
Kapucu
,
S.
,
Baysec
,
S.
, and
Alici
,
G.
,
2006
, “
Residual Vibration Suppression of a Flexible Joint System Using a Systematic Command Shaping Technique
,”
Arabian J. Sci. Eng.
,
31
(
2B
), pp.
139
152
.
You do not currently have access to this content.